Ans. Key

Math 2551 A1-3 Exercise 4

Section:

Name:

Student Number:

Let $\mathbf{r}(t) = \sin t \mathbf{i} + \mathbf{j} + e^t \mathbf{k}$ be the position of a particle at any time t. Mark "True" or "False" for each of the following statements.

 \digamma_{α} (see (1) $\mathbf{r}'(t)$ is parallel to $\mathbf{r}(t)$;

Tyue (2) $\mathbf{r}'(t)$ is tangent to the curve traced out by $\mathbf{r}(t)$;

Folse (3) $\mathbf{r}'(t)$ is perpendicular to $\mathbf{r}(t)$;

(4) $\frac{d}{dt}(\frac{\mathbf{r}}{|\mathbf{r}|})$ is perpendicular to $\mathbf{r}(t)$.

T'(t) gives the tangent direction of
the curve at the point F(t), which isn't
necessarily parallel to the vector F(t), see the
picture. r'(t) isn't perpendicular to F(t) for
all t unless the length of F(t) doesn't change, so (3)
is false. In (4), note that | \frac{\tall(t)}{|\tall(t)|} | = 1
for all t, therefore \frac{d}{dt} (\frac{\tall(t)}{|\tall(t)|}) \(\rightarrow\tall(t) \). The
statement is true.