Ars. Key

Math 2551 A1-3 Exercise 5

Section:

Name:

Student Number:

Let a curve be parametrized by $\mathbf{r}(t) = \sin t \mathbf{i} + \mathbf{j} + e^t \mathbf{k}$, $t \geq 0$, and s(t) be the arc length from $\mathbf{r}(0)$ to $\mathbf{r}(t)$. Mark "True" or "False" for each of the following statements.

Tyue (2)
$$\left| \frac{d\mathbf{r}}{ds} \right| = 1 \text{ for } s > 0;$$

True (3) $\frac{d\mathbf{r}}{ds}$ is parallel to $\frac{d\mathbf{r}}{dt}$ at any point of the curve.

True (4) s(t) is an increasing function for $t \geq 0$.

(n(1)), $\frac{d\vec{r}}{dt}$ doesn't have unit length in general, In fact, $fd\vec{r} = \sqrt{\omega st} + e^{st}$ for t > 0. fact, $fd\vec{r} = \sqrt{\omega st} + e^{st}$ for t > 0. fact, $fd\vec{r} = \frac{d\vec{r}}{ds} = \frac{d\vec{r}}{dt} / \frac{d\vec{r}}{dt}$ for t > 0. fact, $fd\vec{r} = \sqrt{\omega st} + e^{st}$ for t > 0. fact, fact fa