
CONSERVATIVE FRONT TRACKING WITH IMPROVED
ACCURACY∗

JAMES GLIMM†‡ , XIAOLIN LI† , YINGJIE LIU† , ZHILIANG XU† , AND NING ZHAO§

SIAM J. NUMER. ANAL. c© 2003 Society for Industrial and Applied Mathematics
Vol. 41, No. 5, pp. 1926–1947

Abstract. We propose a fully conservative front tracking algorithm for systems of nonlinear
conservation laws. The algorithm improves by one order in its convergence rate over most finite
difference schemes. Near tracked discontinuities in the solution, the proposed algorithm has O(∆x)
errors, improving over O(1) errors commonly found near a discontinuity. Numerical experiments
which confirm these assertions are presented.

Key words. front tracking, conservation, contact discontinuity

AMS subject classifications. 35L65, 74S10

DOI. 10.1137/S0036142901388627

1. Introduction. We propose and demonstrate a tracking finite difference algo-
rithm for the problem of nonlinear conservation laws which is (a) fully conservative
and (b) improves the local error by one power of ∆x near tracked discontinuities. The
one dimensional (1D) version of these ideas was presented in [9], and a preliminary
(but different) two dimensional (2D) algorithm with the same properties was given in
[8], while the results were announced in [10].

Discontinuities in the solution of systems of nonlinear hyperbolic conservation
laws are a primary difficulty for numerical simulation. These equations have both
linear and nonlinear discontinuities, and (perhaps counterintuitively) the former are
more difficult. Nonlinear discontinuities are self-focusing, and their numerical solution
does not grow in width with time. The linear discontinuities in contrast do grow and
may typically occupy 4 to 10 mesh cells in width.

Front tracking was introduced to give special treatment to discontinuities. A ro-
bust validated code has been developed and used in production simulation of fluid in-
stabilities [5, 7, 6, 4]. See also the URL http://www.ams.sunysb.edu/∼shock/FTdoc/
FTmain.html.

In this paper, we address an algorithmic issue—formulation of a conservative
tracking algorithm. In its original formulation, conservation was enforced only in
regular grid cells, those not cut by the tracked front. The missing points of the
computational stencil, in the case of a front cutting through the stencil, are filled
in as ghost cells, with the state values obtained by extrapolation from nearby front
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states of the same component. Thus the state values are double-valued near the front,
with the left-component states extending by extrapolation for a small distance into
the right component, and vice versa. The use of ghost cell states was introduced into
front tracking in 1980 [11]. With the ghost states thus defined, the interior solver
follows a conventional finite difference algorithm.

The algorithm proposed in the present study is conservative for all grid cells,
including the irregular ones cut by the front. This algorithm presented is related to
earlier work of Swartz and Wendroff [18], Harten and Hyman [14], Chern and Colella
[2], and Pember et al. [16] but differs from these works in several ways. Chern and
Colella and Pember et al. redistribute mass from small cells to nearby large ones to
preserve stability and conservation. This issue is addressed here by merging small
cells. Swartz and Wendroff discussed only the 1D algorithm. Pember et al. [16]
reviews these earlier works in 1995. We emphasize here tracking of a contact rather
than the shock tracking of [2].

2. Conservative tracking. Consider the 1D system of conservation laws

∂u

∂t
+� · f(u) = 0.(1)

Weak or discontinuous solutions of this equation are not unique, and the equation
must be supplemented by an entropy condition [17]. In the case of discontinuities,
the partial derivatives in (1) are not defined, and Rankine–Hugoniot conditions

n · ([f ]− v[u]) = 0(2)

apply. Here [A] = A+ − A− is the jump in the quantity across the interface, v is
the velocity of the interface, and n is a unit normal to the interface. In fact, (2)
results from (1) if the derivatives in (1) are interpreted in the sense of distributions.
Representing (1) in integral form, for a moving discontinuity surface S bounding a
time-dependent volume V , we have

∂

∂t

∫
V

udV +

∫
S

n · (f(u)− vu)dS = 0.(3)

Thus n · (f − vu) is the dynamic flux, which replaces the usual flux f for the time-
independent surface.

The essence of the new algorithm introduced here is to track the front in space
and time, based on the following three steps:

1. Construction of the space-time interface to follow the moving solution dis-
continuity. This will follow the grid-based construction [7] and extend it to
space-time.

2. Construction of space-time finite volume cells, starting as a partition of a
regular space-time cell. The cells cut by the space-time interface are defined as
irregular. To ensure an adequate Courant–Friedrichs–Lewy (CFL) restriction,
portions of such irregular cells with too small a top (at tn+1) or no top at all
are merged with neighbor cells.

3. Godunov-type finite volume differencing with limiters to ensure continuity of
the dynamic flux (3), so that the algorithm is conservative on a cell by cell
basis.

To explain these steps at a more detailed but still simple level, we consider in
one dimension an interface whose position at time t is σe(t), and we assume a linear
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approximation σ(t) to σe(t) on [tn, tn+1]. The 1D algorithm is divided into two cases.
We consider only the first case, in which the cell merger from step 2 above is not
required. We assume that the approximate interface does not cross a mesh cell center
within the time interval [tn, tn+1]. Thus for some mesh index i, xi ≤ σ(tn), σ(tn+1) ≤
xi+1. We displace the cell boundary located at x1+1/2 to the interface location. This
change results in a redefinition of the cell average quantity, to yield

Um
i = (∆m

i,e)
−1

∫ σe(tm)

xi−1/2

u(x, tm)dx,(4)

Um
i+1 = (∆m

i+1,e)
−1

∫ xi+3/2

σe(tm)

u(x, tm)dx(5)

for m = n, n+ 1, where ∆m
j,e is the interval over which Um

j is averaged.
Denote by Um

i on [xi−1/2, σ(tm)] and Um
i+1 on [σ(tm), xi+3/2] the numerical ap-

proximations of Um
i and Um

i+1, respectively, and let ∆m
j be the interval over which

Um
j is averaged. Integrating the hyperbolic system over the two trapezoidal regions

[xi−1/2, σ(t)] × [tn, tn+1] and [σ(t), xi+3/2] × [tn, tn+1], the finite difference equation
for irregular cells is replaced by

∆n+1
i Un+1

i = ∆n
i Un

i −∆t{Fn+1/2
int −Fn+1/2

i−1/2 },(6)

∆n+1
i+1 Un+1

i+1 = ∆n
i+1Un

i+1 −∆t{Fn+1/2
i+3/2 −Fn+1/2

int },(7)

where Fn+1/2
int is the numerical approximation to the flux

F
n+1/2
int =

1

∆t

∫ tn+1

tn

(f(u(σe(t), t))− seu(σe(t), t)) dt(8)

across the exact interface. Here σe(t) and se = dσe/dt. The definition (8) gives equal
values when evaluated on either side of the interface due to the Rankine–Hugoniot
condition (2).

Let s(t) = dσ/dt be the speed of the numerically tracked interface σ(t). The choice
of the numerical shock speed is discussed in [3]. Assume a smooth solution in the
interior region excluding the tracked waves. Also we assume that the Riemann solution
associated with (1) depends Lipschitz-continuously on the left and right states which
define the Riemann problem. Using a second order monotonic upstream-centered
scheme for conservation law (MUSCL) reconstruction, we first reconstruct a piecewise
linear function on each cell out of the cell averages at t = tn to yield the approximate
left and right states Un

l ,Un
r at σe(tn) so that Un

l − u(σe(tn)−, tn) = O(∆x2) and
Un
r − u(σe(tn)+, tn) = O(∆x2). Solving the Riemann problem with the above two

approximate states, we obtain a shock speed sn which satisfies sn−se(tn) = O(∆x2).
Therefore, the approximate tracked interface position at t = tn + 1

2∆t is

σn+1/2 = σ(tn) +
1

2
∆t · sn = σe(tn+1/2) +O(∆t2).

Using a Taylor expansion, we reconstruct the approximate left and right states Un+1/2
l ,

Un+1/2
r at (σn+1/2, tn+1/2) from the MUSCL reconstruction so that

Un+1/2
l − u(σe(tn+1/2)−, tn+1/2) = O(∆x2)(9)
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and

Un+1/2
r − u(σe(tn+1/2)+, tn+1/2) = O(∆x2).(10)

Finally, solving a Riemann problem with the left and right states Un+1/2
l and Un+1/2

r ,
we obtain the half time step shock speed sn+1/2 = se(tn+1/2) +O(∆t2), and the new

two sides states Un+1/2
l1 and Un+1/2

r1 across the interface we want to track. Since the
exact solution is smooth near the interface, the new states still satisfy (9) and (10).
This construction gives a local error O(∆x3) for the propagated shock position

σn+1
e = σn + sn+1/2∆t+O(∆t3).

In fact,

σn+1
e − σn =

∫ tn+1

tn

se(t)dt

=

∫ tn+1

tn

[se(tn+1/2) + s
′
e(tn+1/2)(t− tn+1/2) +O(∆t2)]dt

= se(tn+1/2)∆t+O(∆t3)

(11)

to give the desired accuracy. Let the numerical flux across the tracked front associated
with the Riemann problem defined by these two states be

Fn+1/2
i = f(Un+1/2

l1 , tn+1/2)− sn+1/2Un+1/2
l1 .

This flux satisfies

Fn+1/2
i = F

n+1/2
i +O(∆x2)

and is continuous when evaluated from either side of the discontinuity.
The proof that this algorithm is conservative and (for one dimension only) im-

proves its convergence rate near the tracked discontinuity by O(∆x2) is given in [9].

3. The 2D algorithm. Consider the two space dimensional system of conser-
vation laws

∂u

∂t
+
∂f(u)

∂x
+
∂g(u)

∂y
= 0,(12)

defined in a spatial domain Ω. The discontinuities of u, assumed to lie on curves, are
organized to form an INTERFACE, which is propagated from one time level to the
next.

In the present study, we require at each time level that the INTERFACEs are
topologically equivalent to a union of nonintersecting line segments or circles [13].
Thus we postulate that triple or multiple CURVE intersection points do not occur.
Each CURVE is assigned an orientation which remains unchanged during the propa-
gation of the INTERFACE. The discretized CURVE is piecewise linear and connected
and composed of BONDs. Each BOND is a pair of INTERFACE POINTs or POINTs
and (conceptually) the straight line segment joining them. Assume a decomposition
of the plane by a rectangular grid with mesh spacing ∆x, and assume the boundary
∂Ω of Ω lies on grid lines. If the POINTs are all on the interior of cell edges with
at most one POINT occurring on the interior of any given grid cell edge, then the
INTERFACE is called grid-based [7].
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The front POINTs are propagated through the Riemann solutions in the normal
direction followed by a tangential sweep to update the states on the front. Propa-
gation [5, 7, 6, 4] of the POINTs of a grid-based INTERFACE will yield a general
INTERFACE, not grid-based, as there is no reason for a propagated POINT to lie
on a grid cell edge just because it starts on one. The general idea of the grid-based
construction is as follows: we consider this propagated INTERFACE as a collection
of polygonal CURVEs in �2. Crossing points of the CURVE with grid cell edges are
inserted as new POINTs. The propagated old POINTs (named images of propaga-
tion in this sense) will be deleted. The CURVE is then reconstructed as straight line
segments joining these new POINTs. In this process, the CURVE is displaced by an
amount O(∆x2), assuming that the CURVE is smooth, so that all angles between
neighboring BONDs are O(∆x). See also [15, 7, 6] for detailed discussions of the
grid-based INTERFACE construction.

Let Bn
i be a BOND on the grid-based INTERFACE In at the old time step tn,

and let B̄n+1
i be the image BOND after the propagation of the end POINTs of Bn

i . A
new grid-based INTERFACE In+1 is reconstructed through the new POINTs which
are produced by the intersection of the image BONDs and the gridline segments.
Therefore, each new POINT Pn+1

i corresponds to an old BOND Bn
i , but the inverse

is not true, because some bonds will not intersect with any gridline segment. On
the other hand, since an image BOND may have several intersections with different
gridline segments, several new POINTs may correspond to a single BOND Bn

i .
The finite difference method presented here for (12) is an explicit finite volume

integration scheme. The spatial domain Ω has two dimensions. The solution of
u evolves with respect to time, and we treat the temporal dimension as the third
dimension. We join the spatial INTERFACEs at two consecutive time steps to
form a space-time interface. Assume we have a space-time discretization {Vi} which
conforms to the space-time interface as u evolves in one time step from time tn to
tn+1. We solve (12) explicitly in this region. Treating each Vi as a control volume,
we integrate (12) over Vi. By the divergence theorem, we have

|Vi(tn+1)|ū |tn+1= |Vi(tn)|ū |tn −
∫
∂Vi

(u, f(u), g(u)) · ndS,(13)

where ū |tn+1
= 1

|Vi(tn+1)|
∫
|Vi(tn+1)| u(x, y, tn+1)dxdy is defined as a cell average, |Vi(tn+1)|

is the face area of Vi(tn+1) at time tn+1, and n is the outward normal to the space-time
surfaces of Vi. We wish to calculate ū |tn+1

, the solution to (12) at time tn+1.
The major issues in designing the conservative algorithm are (1) to obtain the

space-time INTERFACE, (2) to determine the discretization {Vi}, and (3) to calculate
the fluxes defined on the space-time surfaces of Vi.

To construct a finite volume decomposition which respects the space-time in-
terface, we identify the crossings of the approximate space-time interface with the
space-time hexahedron. We split the space-time hexahedron whose interior is cut by
the space-time interface into parts, each of which belongs to only one side of the space
time interface. For the purpose of maintaining numerical stability (the CFL time step
restriction), we merge those cells with small top area to form a polyhedron with top
area bigger than 0.5∆x2.

3.1. Construction of the space-time interface. In the current section, we
solve the following problem: given two piecewise linear spatial grid-based INTER-
FACEs (CURVEs) which are separated in time by a step �t, construct (triangulate)
a surface joining them. We call this joining surface the space-time interface. The
space-time interface thus formed is also grid-based, as a three-dimensional (3D) inter-
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face (two spatial and one temporal dimensions). The local configurations within a
single grid cell for such a 3D grid-based interface have been discussed in [6]. We
introduce two hypotheses regarding the old and new spatial interfaces. These hy-
potheses limit the local complexity of the interface. More complicated topological
structures will not be included in the scope of this paper.

Hypothesis 1. The INTERFACE is assumed to be grid-based. There is no
topological change of the INTERFACE during the time interval of computation. Each
CURVE is topologically equivalent to a line segment with its two end points on the
boundary, or a circle contained in the interior of Ω. No CURVE is totally contained
within a square of side 2∆x made up of four cells.

Hypothesis 2. The CFL number is less than 1
2 so that each POINT of the

INTERFACE is propagated a distance less than 1
2∆x within a single time step.

Assume Hypothesis 1. For a grid-based INTERFACE In, each POINT on In is
a crossing POINT; there exists at most one crossing POINT on each grid cell edge.
No crossing is deleted during the reconstruction of the grid-based INTERFACE, as
such deletion would indicate a change of topology. Propagation of In POINTs at one
single time step gives a new INTERFACE In+1

0 . The new grid-based INTERFACE
In+1 is reconstructed from In+1

0 through the algorithm discussed above.
After the reconstruction of In+1

0 , the order of POINT s on the reconstructed IN-
TERFACE In+1 agrees with the natural order of the POINT s on In in the following
sense: Let Bn

1 be an In BOND connecting adjacent POINTs P1 and P2. Let B
n
2 be an

In BOND following Bn
1 , connecting adjacent POINTs P2 and P3. After propagation,

Bn
1 is mapped onto an In+1

0 linear segment Bn+1
1 with a left end point M1 as the

image of P1 and a right end point M2 as the image of P2; similarly, Bn
2 is mapped

onto Bn+1
2 of In+1

0 with a left end point M2 and a right end point M3 as the image
of P3. The reconstruction first inserts into In+1

0 the crossing points of In+1
0 with grid

lines as new POINT s. The insertion of new POINT s does not change the orienta-
tion or order of the polygon Bn+1

1

⋃
Bn+1

2 , which preserves its order from the polygon
Bn

1

⋃
Bn

2 . Similarly, the removal of POINT s, with the deformation of the polygon
to connect with the remaining POINT s by linear segment, is order-preserving. Thus
grid-based In+1 reconstructed from In+1

0 by connecting the new POINT s as above
described preserves the POINT order.

For the grid-based method, every INTERFACE POINT lies on a cell edge. A
POINT P is assigned on index (i, j) if it is located within a half grid size (0.5∆x)
away from the grid node (i, j). The proximity Prox P of P includes nine dual grid
cells centered at grid node (i− 1 to i+ 1, j − 1 to j + 1).

Assume P1 and P2 are the start and end POINTs of BOND Bn+1 on In+1; the
(i, j) indices of these two POINT s can be identical, adjacent, or diagonally adjacent.
The proximity Prox B of BOND Bn+1 is defined as Prox P1 ∩ Prox P2. Therefore,
the following hold.

(1) If (i, j) indices of P1 and P2 are identical, say, both are (i, j), Prox B is the
nine dual grid cells centered at nodes (i− 1 to i+ 1, j − 1 to j + 1).

(2) If (i, j) indices of P1 and P2 are adjacent, say, (i, j) for P1 and (i + 1, j) for
P2, then Prox B includes the six dual grid cells centered at nodes (i to i+1,
j − 1 to j + 1). Prox B for the case in which the second index of P1 and P2

differs by 1 is similarly defined.
(3) If (i, j) indices of P1 and P2 are diagonally adjacent, say, (i, j) for P1 and

(i+1,j+1) for P2, Prox B includes the four dual grid cells centered at nodes
(i to i+ 1, j to j + 1).
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X

X

B
n

i

Region of influence

Fig. 1. Region of influence of a bond Bn
i .

A POINT of In which is located inside the proximity of Bn+1 is called a spatially
nearest POINT of Bn+1 on In. If a BOND Bn+1 of In+1 is the result of propagation
followed by the grid-based reconstruction of a single BOND Bn on In, then Bn is
called the parent BOND and Bn+1 is the child BOND. In this case, Bn+1 is formed
by the insertion of crossing POINTs into the propagated image of Bn. The region of
influence of any BOND in Figure 1 is the region within 0.5∆x of the points on the
BOND.

Proposition 1. Assume Hypotheses 1, 2. Let P1 and P2 be two adjacent POINTs
connected by a reconstructed grid-based bond Bn+1 of In+1. If P1 is produced (through
propagation and intersection of a bond with a gridline segment) by Bn

1 of In, P2 is
produced by Bn

2 of In, and the curve on In is oriented so that Bn
2 follows Bn

1 , then
there exists at least one POINT between the start of Bn

1 and the end of Bn
2 which lies

within the proximity of Bn+1.
Proof. Let C with corner nodes (i, j), (i + 1, j), (i, j + 1), and (i + 1, j + 1) be

the cell containing Bn+1. Assume Bn
1 �= Bn

2 . In this case, to produce Bn+1, all the
propagated POINTs between (including) the end of Bn

1 and the start of Bn
2 must lie

in the cell C at the new time step tn+1. By Hypothesis 2, all the corresponding old
points must be in the proximity defined by P1 and P2, because the shortest distance
from the boundary of the cell C to the boundary of the proximity is at least 0.5∆x.

Next we assume Bn
1 = Bn

2 . In this case, Bn
1 is the parent BOND of Bn+1 and

the entire Bn+1 must be within the region of influence of Bn
1 . Since the proximity of

Bn+1 is the intersection of the proximities of the two POINTs P1 and P2, it is the
smallest when the indices of P1 and P2 are diagonally adjacent, a property we now
assume. The proximity is the rectangle ABCD in Figure 2. We want to prove that
at least one POINT of Bn

1 is located within the rectangle ABCD. To prove this, we
show that the parent BOND Bn

1 cannot have both POINTs outside the proximity.
We now draw the boundary of the region of influence of all the grid-based bonds

with both end POINTs outside the proximity of Bn+1. The inner boundary of this
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Fig. 2. Region of influence of all bonds completely outside the proximity of Bn+1 of which the
(i, j) indices of Bn+1 end points P1 and P2 are diagonally adjacent.

region is the polygon abcdefgh as in Figure 2. If the parent BOND Bn
1 has both

end points outside the proximity, then Bn+1, lying in its region of influence, should
be completely outside the polygon abcdefgh. Thus it must lie in one of the four
small regions near one corner of the cell C. Since the polygon cuts the edges of the
cell C at a distance 0.5(

√
2 − 1)∆x ≈ 0.207∆x from the four cell corners, the mesh

indices of the end POINTs of Bn+1 cannot be diagonally adjacent. Therefore, no
bond with both end POINTs outside the proximity ABCD can be the parent bond of
Bn+1. Therefore, at least one end point of Bn must be located within the proximity
ABCD.

The other two cases, when the indices of P1 and P2 are identical or adjacent, have
a larger proximity for Bn

1 . Similar but easier arguments prove Proposition 1 in these
cases. This completes the proof.

Proposition 2. Assume Hypotheses 1, 2. Let Bn+1
1 with end points P1 and

P2, and Bn+1
2 with end point P2 and P3 be two adjacent BONDs on In+1 in their

natural order. Let Bn
1 , Bn

2 , and Bn
3 be the bonds on In which produce P1, P2, and

P3. Denote the spatially nearest POINTs to Bn+1
1 on In as group 1 and the spatially

nearest POINTs to Bn+1
2 on In as group 2. There exist a POINT M1 in group 1 and

a POINT M2 in group 2 such that (1) M1 is a POINT between (including) the start
of Bn

1 and the end of Bn
2 , and M2 is a POINT between (including) the start of Bn

2

and the end of Bn
3 ; (2) M1 precedes or equals M2 in the orientation of In.

Proof. If Bn
1 , B

n
2 , and B

n
3 are three distinct bonds, we take M1 as any POINT

between (including) the end of Bn
1 and the start of Bn

2 andM2 as any POINT between
(including) the end of Bn

2 and the start of Bn
3 . This choice satisfies Proposition 2 in

view of Proposition 1.
Next we consider the case Bn

1 = Bn
2 �= Bn

3 . We select M1 as one of the end
POINTs of Bn

1 which is in group 1. Such a POINT exists by Proposition 1. M2 can
be selected between (including) the end of Bn

2 to the start of Bn
3 . M1 and M2 satisfy

Proposition 2. The case Bn
1 �= Bn

2 = Bn
3 is similar.
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Fig. 3. The triangulated space-time interface.

Finally, we consider Bn
1 = Bn

2 = Bn
3 . In this case, P1, P2, and P3 lie on a straight

line. It is obvious that Proposition 2 holds for the following three cases: (1) the start
of Bn

1 in both Prox Bn+1
1 and Prox Bn+1

2 ; (2) the end of Bn
1 in both Prox Bn+1

1 and
Prox Bn+1

2 ; and (3) the start of Bn
1 in Prox Bn+1

1 and the end of Bn
1 in Prox Bn+1

2 .
We now prove that it is impossible to have the end of Bn

1 in Prox Bn+1
1 \ Prox

Bn+1
2 and the start of Bn

1 in Bn+1
2 \ Prox Bn+1

1 . For this to occur, the propagation
of both the start and the end points of Bn

1 must completely pass through the region
of Prox Bn+1

1 ∩ Prox Bn+1
2 . It is easy to verify that the widths of the intersection

in both the x and y directions are at least ∆x. However, the maximum propagation
distance in one time step is 0.5∆x. The proof is complete.

The surface triangles in space-time are formed by joining the POINTs of In+1

and In. Each triangle has a side taken from a single linear segment (BOND) of either
In+1 or In and an opposite POINT from the other. We denote a space-time interface
triangle which is composed of a BOND at time tn+1 and an opposite POINT from
In as an upper triangle, and a triangle which is composed of a BOND at time tn
and an opposite POINT from In+1 as a lower triangle. The space-time interface
triangulation is organized into the following two steps:

1. We first form the upper triangles of the space-time interface. For each In+1

BOND Bn+1
m whose start and end POINT s are Pm and Pm+1, we find by

Proposition 1 the spatially nearest POINT s on In. Denote these POINTs
as group m. Select one POINT Mm from each group m to form the list
[M1,M2,M3, . . . ] with the same orientation as In (due to Proposition 2); Mi

and Mi+1 are not necessarily distinct. Connect each Mm to Pm and Pm+1 to
form upper triangles.

2. The gap on the space-time interface left by step 1 is filled by lower triangles.
Each BOND Bn

k on the In is located between a pair of distinct POINTs
Mk and Mk+1. Mk and Mk+1 are connected to a common POINT on In+1

during the construction of the upper triangles. Connect this common POINT
to the start and end POINTs of Bn

k to form a lower triangle. This completes
the space-time interface triangulation.

Figure 3 shows the triangulated space-time interface. Each triangle is distin-
guished from its neighbors by contrasting grey shades.
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Fig. 4. Hexahedra and partial polyhedra before volume merging.

3.2. Construction of the space-time hexahedra. We connect the nodes of
a cell Dn

i at time t = tn to the nodes of the corresponding cell Dn+1
i at time t = tn+1

to form a space-time hexahedron. We call Dn+1
i the top of the hexahedron and Dn

i

the bottom. We call a hexahedron mixed if the interface passes through its interior,
otherwise, it is pure. The mixed hexahedra are divided into pure partial hexahedra,
and if necessary, these are combined with neighbors to form a finite volume space-
time grid suitable for construction of a conservative difference algorithm in section 3.3.
They are adjacent if they share a nontrivial surface which does not meet the space-
time interface. Two space-time polyhedra are neighboring if they share a nontrivial
vertical line segment which is part of the grid line connecting two corresponding grid
nodes at the time levels tn and tn+1 (denoted by a vertical grid line) that does not
cross the space-time interface. It is easy to see that two adjacent or neighboring
polyhedra must be on the same side of the space-time interface.

The mixed hexahedron is separated by the space-time interface into several parts,
each of which lies on one side of the space-time interface. These parts are called pure
partial hexahedra or, in short, partial hexahedra. We can similarly define a cell to
be pure, mixed, or partial. Any partial hexahedron with a trivial or small top will
be merged with an adjacent pure hexahedron or partial hexahedron having a top of
minimal size.

Figure 4 shows the control volumes constructed on one side of the space-time in-
terface. Adjacent hexahedra or pure partial polyhedra are represented by contrasting
grey shades. Only the volumes near the space-time interface are displayed.

Recalling that two adjacent hexahedra are on the same side of the interface, the
following lemma [8] ensures the eventual success of the merging algorithm.

Lemma 1. Assume Hypothesis 1. If a space-time polyhedron is constructed by
merging any number of adjacent partial hexahedra with no top, then the polyhedron
will be adjacent to a pure or partial hexahedron on the same side of the space-time
interface.

Proof. At least one nontrivial piece of the side surface of the polyhedron is not on
the boundary or the space-time interface; otherwise, the topological structure of the
INTERFACE changes during this time step and Hypothesis 1 is violated. The proof
is complete.
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Fig. 5. A top view of the polyhedra merging process. The solid line represents In+1, and the
dashed line represents In. There are four polyhedra in the four upper left mesh blocks: polyhedron 1
with bottom ABC and no top, polyhedron 2 with bottom face BHGC and no top, polyhedron 3 with
bottom face ACED and the triangular top KEJ, and polyhedron 4 with a square bottom CGFE
and the trapezoidal top KLFE. They will be merged into one polyhedron with bottom ACBHGFED
and top KLFEJ.

Hypotheses 1 and 2 and Lemma 1 ensure that each partial hexahedron with no
top and away from the boundary is adjacent to or neighboring one with a nontrivial
top. However, for a partial hexahedron with no top and at the boundary, Hypothesis 2
may not be sufficient if the interface intersects the boundary at a small angle. We need
to adjust the CFL number so that the intersection point between the INTERFACE
and the boundary moves a distance less than ∆x along the boundary during the time
step in order to reach the same property.

We require a hypothesis to limit the local geometric complexity of the INTER-
FACE. To simplify the proof that the merging algorithm converges (rapidly), we
state it in a stronger than necessary form. See section 3.4 for a discussion of this
issue.

Hypothesis 3. Each partial hexahedron having top area smaller than 1
2∆x

2 is
adjacent to or neighboring one with top area greater than or equal to 1

2∆x
2.

Because the flux exchange among control volumes is through the shared space-
time surfaces, we merge only adjacent partial hexahedra on the same side of the space-
time interface and not neighboring ones. For this reason, merger is accomplished in
stages, i.e., recursively. The merging process then is stated as follows.

Assume Hypothesis 3. Recursively merge every pure or partial hexahedron having
a top area greater than or equal to 1

2∆x
2 with adjacent partial hexahedra having no

top or top area smaller than 1
2∆x

2 which have not been merged elsewhere until none
of the partial hexahedron having no top or top area smaller than 1

2∆x
2 is left. Denote

the resulting space-time polyhedra the big hexahedra. The merging process then is
complete. Partial polyhedra generated at each merging stage are called intermediate
hexahedra.

As illustrated in Figure 5, polyhedron 4 with a square bottom face CGFE and
top face area KLFE greater than 1

2∆x
2 forms the center of merging. The merged

polyhedra include polyhedron 3 with bottom face ACED and a small triangular top
KEJ , polyhedron 2 with bottom face BHGC and no top, and polyhedron 1 with
bottom face ABC and no top. Polyhedra 2 and 3 are adjacent to 4, while polyhedron
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Fig. 6. Control volumes after merging.

1 is diagonally adjacent to 4. In the merging process, polyhedra 2 and 3 are absorbed
by polyhedron 4 first. A intermediate hexahedron with bottom face ACBHGFED is
formed. Polyhedron 1 is adjacent to it. Finally, this intermediate hexahedron absorbs
polyhedron 1, resulting in a big hexahedron with bottom face ABHGFED and top
face KLFEJ .

Determined by Lemma 1 and Hypothesis 3, it is easy to see that a big hexahedron
contains no more than a fixed number of pure or partial hexahedra so that the merging
process stops rapidly. Actually in most cases the merging process yields big hexahedra
consisting of two pure or partial hexahedra. The number of pure or partial hexahedra
in the big hexahedron could become larger if the radius of curvature of the moving
CURVE is small. In fact, we have the following observation.

Assume Hypothesis 3. Let a pure or pure partial hexahedron H with top area
greater than 1

2∆x
2 be contained inside a space-time cell with cell index (i, j). If

H forms a big hexahedron by absorbing pure partial hexahedra during the merging
process, the bottom faces of these pure partial hexahedra which merge with H are
located inside a square, centered at (i, j), with side 3∆x.

Figure 6 shows the control volumes on two sides of the space-time interface after
the merging process. Only the volumes near the space-time interface are displayed.

Theorem 1. Assume Hypotheses 1–3. After the merging algorithm, every partial
hexahedron having no top or top area smaller than 1

2∆x
2 will be merged into a big

hexahedron having top area greater than or equal to 1
2∆x

2 on the same side of the
interface. The interior of each big hexahedron is connected.

3.3. The reconstruction, limiter, and numerical scheme. Suppose at the
time level t = tn we know the approximate state averages on each cell, regular,
irregular, or partial. We want to reconstruct a piecewise linear state function on
these cells with second order accuracy. The reconstruction of the piecewise linear
state function on irregular cells follows [1], with modifications to the limiter and some
simplification. Let Dn

i be a pure cell, regular, irregular, or partial, with approximate
state average Ui and cell center (centroid) Yi, surrounded by any of the types of
cells Dn

j , D
n
k , D

n
l , D

n
m with approximate state averages Un

j ,Un
k ,Un

l ,Un
m and cell centers

Yj , Yk, Yl, Ym, respectively, on the same side of the INTERFACE . Let Ũi = Ui+(a, b) ·
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(X −Yi) be the second order accurate linear state function on Dn
i , where a, b are two

constants. Choose any two surrounding cells, say, Dn
j , D

n
k so that Yi, Yj , Yk are not

colinear. We can determine a, b by solving the following equation:

Ũi(Yj) = Un
j ,

Ũi(Yk) = Un
k .

(14)

Further, for the solution of the above equation to be well conditioned, we require
the angle θ formed by line segments YiYj and YiYk to satisfy 0 < θ1 < θ < θ2 <
π, where θ1, θ2 are two constants. We repeat the above procedure until we find
all possible solutions, say, ai, bi, for all 0 ≤ i ≤ I, where I ≤ 4. Then we set
a = minmod{a1, . . . , aI} and b = minmod{b1, . . . , bI}. When there are not enough
surrounding cells on the same side of the INTERFACE, we choose a, b = 0 so that
the reconstruction becomes first order.

When Dn
i is a regular cell surrounded by regular cells, the reconstruction process

is simpler. Let the cell center of Dn
i be (i1∆x, i2∆y) with neighboring cell centers

{((i1 + k1)∆x, (i2 + k2)∆y)|k1, k2 = −1, 0, 1}. Let
xslopei = minmod{[U((i1 + k1)∆x, (i2 + k2)∆y)

−U((i1 + k1 − 1)∆x, (i2 + k2)∆y)]/∆x |
k1 = 0, 1; k2 = −1, 0, 1},

(15)

and

yslopei = minmod{[U((i1 + k1)∆x, (i2 + k2)∆y)
−U((i1 + k1)∆x, (i2 + k2 − 1)∆y)]/∆y |

k1 = −1, 0, 1; k2 = 0, 1},
(16)

and define

Ũi = Ui + xslopei · (x− i1∆x) + yslopei · (y − i2∆y).
This second order reconstruction is better suited in multiple dimensions than in the
operator splitting single line reconstruction (or limiter) for a uniform rectangular grid
because, for example, an untracked discontinuity in two dimensions may be in the
form of a strip of width between 2∆x and 3∆x. When the strip is almost parallel
to and fully covers the line in which the single line reconstruction occurs, one cannot
expect the limiter to choose any smooth solutions nearby.

Next we apply the technique of section 3.2 to generate space-time hexahedra
between time levels tn and tn+1. Let H be a big hexahedron with top Dn+1, bottom
Dn, and triangle sides {Si} with a unit outer normal ni and centroid Zi. Notice
that some elements of the {Si} may be on the approximate space-time interface.
Integrating (12) over H, we obtain

|Dn+1| Un+1 = |Dn| Un −
∑
i

∫
Si

(u, f, g) · nids.(17)

Here |Dn| represents the area of Dn, and similarly |Si| is the area of Si.
The numerical scheme can be written as

|Dn+1|Un+1 = |Dn|Un −
∑
i

|Si|(Ũi,m, f(Ũi,m), g(Ũi,m)) · ni.(18)
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The fluxes through triangle sides {Si} can be calculated by a higher order Godunov-
type algorithm.

We first calculate Ũi,m as follows: First use a Cauchy–Kowalewski procedure on
the reconstructed state function on each side of Si to get second order approximate
states at Zi on the respective sides of Si, say, Ui,l and Ui,r. If Si is not on the tracked
space-time interface, we can simply use a Riemann solver, say, R, to get the middle
state on Si, i.e.,

Ũi,m = R(Ui,l, Ui,r).

If Si is on the tracked space-time interface, we use the Riemann solver to get the left
and the right side states Ũi,l and Ũi,r on the wave we are supposed to track and the

wave speed νi. Then Ũi,m in (18) can be replaced by either Ũi,l or Ũi,r, depending
on whether l or r is located within H or not. Also, the ni in (18) should be replaced

by ñi/|ñi|, where ñi = (−νi
√
n2
ix + n2

iy, nix, niy), ni = (nit, nix, niy). Note that ñi is

normal direction of the tracked space-time wave from the Riemann solver; therefore,
this modification ensures that the Rankine–Hugoniot condition is satisfied.

The finite volume difference algorithm constitutes a flux through each boundary
of the full, partial, and big hexahedron. Since the flux through a boundary face of
the hexahedron is identical when viewed from either side of the face, we have the
following theorem.

Theorem 2.
∑

cells |Dn|Un in the finite volume difference scheme is conserved
so that its increment over any time interval is equal to the net influx at the boundary.

Away from the INTERFACE the scheme is clearly a second order scheme. For
the cells along the INTERFACE, its local error is one order lower than in the 1D case
since we use a piecewise linear approximation to the smooth INTERFACE and the
local displacement error of this approximation is O(∆x2). The scheme is one order
better than untracked schemes, which typically have O(1) local error at the untracked
fronts.

Theorem 3. Suppose the exact space-time interface and the solution on either
side of it are smooth. Then the L∞ error is O(∆x) for cells adjacent to the INTER-
FACE.

Proof. Let the INTERFACE at tn be exact, and let H be a big hexahedron
adjacent to the approximate space-time interface. We apply the finite volume scheme
to obtain the approximate state average Un+1

i at the time level tn+1, with top T and
bottom B and side boundaries {Si}, where each Si is a triangle. The INTERFACE
at time tn+1 has an O(∆x2) displacement from the exact interface. The exact space-
time interface will cut H into two pieces. Let H1 be the piece on the same side of the
interface as H. Let T1, B1, and S

1 be the top, bottom, and side boundaries of H1,
respectively. Let Un+1

T1
, Un

B1
be the exact state averages over T1 and B1, respectively.

Choosing Un
B = Un

B1
, we want to show that Un+1

T1
− Un+1

T = O(∆x). In fact, from
(18),

|T |Un+1
T = |B|Un

B −
∑
i

|Si|(Ũi,m, f(Ũi,m), g(Ũi,m)) · ni.(19)

The exact solution satisfies

|T1|Un+1
T1

= |B1|Un
B1

−
∫
S1

(u, f(u), g(u)) · nds.(20)
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Note that |B|Un
B = |B1|Un

B1
. Also, the numerical flux in (19) approximates the exact

flux in (20) to at least O(∆x3). In fact, when Si is not on the approximate space-time
interface, this is easily seen since

∫
Si
(u, f, g) · nids = |Si|(u, f, g)(Zi) · ni +O(∆x4).

Next suppose that Si is on the approximate space-time interface. Because of
the smoothness of the exact space-time interface, it has an O(∆x2) displacement er-
ror to the exact one. The difference between their respective areas is of O(∆x3).
The area of

⋃
Si is O(∆x2). Also, the choices of Ũi,m and ni in (19) ensure that

(Ũi,m, f(Ũi,m), g(Ũi,m)) · ni in (19) is a first order approximation to the integrand
in (20) at any point within an O(∆x) distance from the centroid Zi of Si. Thus∫
Si
(u, f, g) ·nids = |Si|(u, f, g)(Zi) ·ni+O(∆x3) in the case that Si is on the approx-

imate space-time interface. Therefore, we have

Un+1
T1

− Un+1
T = (|T1|Un+1

T1
− |T |Un+1

T )/|T |+ Un+1
T1

((|T | − |T1|)/|T |)
= (O(∆x4) +O(∆x3))/O(∆x2) +O(∆x3)/O(∆x2)

= O(∆x),

(21)

where O(∆x4) and O(∆x3) in the first bracket follow from the local error of the
numerical approximation of the flux defined on the non space-time interface and
space-time interface, respectively. The proof is complete.

3.4. Cell level complexity and interface topological change. Because the
dynamic evolution of the INTERFACE often leads to geometrically complex situa-
tions, Hypothesis 3 might fail. For example, the Richtmyer–Meshkov (RM) instability
develops very long and thin structures at the tips of bubbles and spikes at late time;
see Figure 7 for an illustration.

The narrow structures and approximate or actual bifurcations will degrade the
algorithm. Excessive cell merging to ensure CFL stability will degrade accuracy, and
in any case actual bifurcations are (presently) excluded. We require a robust algorithm
to solve problems for which any of the above occurs. We propose that these situations

I I
n n+1 I

n In+1

Fig. 7. Limits on the merging process. In is represented by the dashed line and In+1 by the
solid line. At the time tn+1 level, in the first frame, the triangular cell at the tip is adjacent to
a triangular cell and quadrilateral only; all of these cells form partial hexahedra having top area
smaller than 1

2
∆x2 and thus require further merger. In the second frame, the two branches of the

curve near the tip of In and In+1 are close and parallel to each other (forming a thin wall), thus
forming a set of neighboring polyhedra with top area smaller than 1

2
∆x2.
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Table 1
Comparison of error analysis for the test problem (22) for Burgers’ equation.

Method N L1 error L1 order ΣUi∆xi

30 6.83e-2 - 1.732

Untracked 60 3.49e-2 0.969 1.733

120 1.63e-2 1.10 1.733

240 8.24e-3 0.984 1.733

30 2.80e-2 - 1.721

Nonconservatively 60 6.89e-3 2.02 1.716

tracked 120 4.23e-3 0.704 1.742

240 2.01e-3 1.07 1.741

30 2.17e-2 - 1.732

Conservatively 60 7.07e-3 1.62 1.733

tracked 120 2.11e-3 1.74 1.733

240 6.04e-4 1.80 1.733

should be resolved by locally nonconservative tracking using the ghost cell algorithm
of the authors [12]. Since these events will often occur on a lower dimensional space-
time manifold, they will not impact the formal order of accuracy of the algorithm.

4. Numerical examples. In this section we present numerical examples show-
ing the convergence and conservation properties of the conservative front tracking
scheme.

4.1. Burgers’ equation. Consider Burgers’ equation ∂u
∂t + ∂

∂x (
1
2u

2) = 0 on
[0, 6]× [0, T ], with initial conditions

u(x, 0) =

{
0.2 ∗ (x− 1)2 + 0.2, x ∈ [1, 3],

0.2, elsewhere.
(22)

In Table 1 we present numerical results at (T = 3.2) using three different methods:
the untracked MUSCL scheme, the nonconservatively (shock) tracked scheme with
an MUSCL interior solver, and the conservatively (shock) tracked scheme with an
MUSCL interior solver. Here the column labeled L1 error indicates the L1 norm of
u− Ũ , where u is the exact solution and Ũ is the second order approximate solution
reconstructed from the piecewise constant numerical solution U at time T . Figure 8
displays the comparison of the numerical results obtained with N = 30 cells. For all
of section 4, the CFL number is equal to 0.4.

4.2. 1D Euler equations. Next we conduct a convergence test for the 1D Euler
equations for a gamma law gas, γ = 1.4. We consider a tracked shock wave interacting
with C∞ data (a rarefaction wave with smooth edges). The computational domain
is [0, 4] with flow-through boundary conditions. At time T = 0 there is a right facing
rarefaction wave in (1, 2) and a left moving shock at x = 3. The left facing shock
interacts with the rarefaction wave by the final time T = 1. We first define the initial
states V0 as follows: on [0, 1], the density, pressure, and velocity are 2.0, 0.5, and
−1.0, respectively. On [1, 2], V0 has a centered rarefaction wave, ending at a pressure
1.5. On [2, 3], the state is constant. On [3, 4], the velocity is −1.5. Since the first
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Fig. 8. Comparison of numerical results for Burgers’ equation.

Table 2
Comparison of L1 errors.

Nonconserv. tracked Conserv. tracked

N L1 error L1 order L1 error L1 order

100 0.0373 - 0.0395 -

200 0.0135 1.47 0.0106 1.90

400 0.00649 1.06 0.00361 1.55

800 0.00290 1.16 0.000891 2.02

1600 0.00148 0.970 0.000245 1.86

3200 0.000761 0.960 0.0000615 1.99

derivatives of V0 have jumps at the rarefaction wave edges, we smooth the initial data
V0 so that

U0(x) :=

{
V0(1)(2− β(x)) + V0(2)(β(x)− 1), x ∈ (1, 2),

V0(x), elsewhere,

where β(x) = 1
2 (sinπ(x− 3

2 )+3). We conduct the convergence test with the smoothed
initial states U0. The interior scheme is the second order MUSCL scheme with the
shock wave tracked conservatively in one case and nonconservatively in the other. It
is compared with a very fine (N = 12800, conservatively tracked) numerical solution
to calculate the error in the L1 norm. The comparison of the L1 errors is shown
in Table 2; the shock position errors σe − σn are compared in Table 3, where σe
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Table 3
Comparison of shock position errors.

Nonconserv. tracked Conserv. tracked

N σe − σ order σe − σ order

100 -4.20e-6 - 2.90e-4 -

200 -4.58e-6 - 9.15e-5 1.66

400 -2.54e-5 - 1.71e-5 2.42

800 -2.29e-5 - 2.85e-6 2.58

1600 -1.12e-5 1.03 9.70e-6 1.55

3200 -5.38e-6 1.06 2.00e-7 2.28

Fig. 9. Front plot for the simulation of a horizontally moving contact discontinuity. The first
frame displays the initial position of the contact; the second displays it after moving horizontally
one quarter domain width in 169 time steps.

denotes the exact shock position and σn denotes the numerical shock position. The
conservatively tracked scheme is second order accurate.

4.3. 2D advection. We conduct a horizontal advection conservation test for the
Euler equations to compare the fully conservative tracking scheme to the nonconser-
vative tracking scheme. The numerical experiments were performed on a rectangular
1 × 2 domain with a 40 × 80 grid, displacing the interface horizontally half the do-
main width in 337 time steps. For the lower and upper boundaries of the domain, we
use flow-through boundary conditions on which the states are normally extrapolated
from the interior, and periodic conditions on the side boundaries. We use a poly-
tropic gas, with polytropic exponent γ = 1.4. The contact discontinuity separating
distinct gas states is tracked. The interface is sinusoidally perturbed with frequency
2.0 and amplitude 0.3. The initial configuration and the one-quarter width displaced
configuration are shown in Figure 9. Excellent preservation of the sine wave is evident.
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Table 4
Conservation error.

Conservation Error

Conservative tracking Nonconservative tracking

Mass 0.0 0.21%

x-mom 0.0 0.21%

Energy 0.0 0.21%

Fig. 10. Spike amplitude in the RM instability simulations, as functions of time. The con-
servative tracked amplitude for a coarse grid is in approximate agreement with the nonconservative
tracked amplitude for a fine grid.

In Table 4, we compare the total conservation for the two methods, which is
defined for the mass as

(final mass− initial mass + boundary mass flux)/(initial mass),(23)

with similar definitions for other conserved quantities. The conservative quantities
refer to the lower gas in Figure 9. The total mass, momentum, and energy in the
computational domain for the conservative tracking scheme show essentially perfect
conservation, while the nonconserved tracking shows conservation errors of 0.21%.

4.4. Richtmyer–Meshkov instability. A Richtmyer–Meshkov (RM) instabil-
ity is generated when a shock wave refracts through a perturbed interface which
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Fig. 11. Front plot for the RM instability simulations. The upper row shows the plots of
nonconservatively tracked interface at time = 1.38. The lower row shows the plots of conservatively
tracked interface at the same time. For both rows, from left to right, are 40 × 80, 80 × 160 and
160 × 320 grids, respectively.

separates fluids of differing densities. We compare simulations produced by the con-
servative and the nonconservative tracking schemes.

The numerical experiments were performed on a rectangular 1×2 domain, with a
40 × 80 grid, the lower and upper boundaries with flow-through boundary conditions,
and periodic conditions for the side boundaries.

The initial configuration consists of a Mach 5.0 shock in a polytropic gas (with
unshocked density 1.0) striking an interface separating two polytropic gases (both
have polytropic exponent γ = 1.40). The preshock contact density ratio is 1 : 5. The
interface is sinusoidally perturbed with wavelength 1.0 and amplitude 0.1. Figure 11
shows the interface evolution of the RM instability; the initial configuration is shown
as the left column. We also performed refined nonconservatively tracked simulations
with 80 × 160 and 160 × 320 grids. The results indicate the convergence of the
growth rate with nonconservative simulation to that of the conservative simulation
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when the computational mesh of the nonconservative simulation is refined. The 40×80
conservatively tracked solution appears to be comparable to both the finest (160×320)
nonconservatively and conservatively tracked solutions, while the nonconservatively
coarse grid run (40× 80) tends to have a smaller growth rate. See Figures 10 and 11.

5. Conclusions. We have proposed a new fully conservative front tracking al-
gorithm. The algorithm is derived from an integral formulation of the PDEs. The
1D version of the algorithm is fully second order accurate away from the intersection
of tracked waves. This has been determined by both the formal derivation and nu-
merical experiments. In two dimensions, we provided the formal derivation that the
scheme should be second order in the interior region and first order near the front.
The convergence of bubble growth rate in the simulation of the RM instability seems
to support this claim. Numerical tests in one and two dimensions demonstrate the
improved conservation and convergence properties of the algorithm. The stability of
the algorithm is verified by numerical experiments.

Conservative tracking is fundamentally an exercise in computational geometry to
define the space-time interface. The finite volume differencing defined by the geometry
follows standard algorithms. Further study of the space-time interface construction
is called for. A robust algorithm may include nonconservative tracking for regions of
greater local complexity than the conservative space-time interface construction will
support.
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