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Abstract

New schemes are developed on triangular grids for solving ideal magnetohydro-
dynamic equations while preserving globally divergence-free magnetic field. These
schemes incorporate the constrained transport (CT) scheme of Evans and Hawley [39]
with central schemes and central discontinuous Galerkin methods on overlapping cells
which have no need for solving Riemann problems across cell edges where there are
discontinuities of the numerical solution. These schemes are formally second-order
accurate with major development on the reconstruction of globally divergence-free
magnetic field on polygonal dual mesh. Moreover, the computational cost is reduced
by solving the complete set of governing equations on the primal grid while only solv-
ing the magnetic induction equation on the polygonal dual mesh. Various numerical
experiments are provided to validate the new schemes.

1 Introduction

The ideal magnetohydrodynamic (MHD) equations describe the dynamics of electrically con-
ducting fluids and have wide applications in fields like astrophysics and laboratory plasmas.
In two-dimensional (2D) space, the ideal MHD equations written in the conservative form
are
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Here ρ is the fluid density, u = (ux, uy, uz)
t is the velocity, B = (Bx, By, Bz)

t is the
magnetic field, ε is the total energy density, p = pgas + B · B/2 is the total pressure and
pgas is the hydrodynamic gas pressure. In this paper, pgas is assumed to satisfy the following
equation of state

pgas = (γ − 1)(ε− 1

2
ρu · u− 1

2
B ·B) ,

where γ is the adiabatic index. The electric field E is given by E = −u × B. We also use
the notation x ≡ (x, y) for spatial variables in 2D.

The magnetic field B is supposed to be divergence-free at any time

∇ ·B = 0 . (1.2)

However the divergence-free constraint (1.2) introduces additional difficulty in solving Eq. (1.1)
numerically. If ∇ · B is not exactly zero and increases with time, unphysical solutions in
which magnetic field lines have wrong topologies leading to plasma transport orthogonal to
the magnetic field could occur. See also references [3, 7, 34, 25] for related discussions.

To design schemes for solving the ideal MHD equations, many efforts have been devoted
to developing techniques to ensure the divergence-free evolution of the magnetic field. To
name a few, these include Hodge projection approach [3], Powell’s source term formulation
[6], constrained transport (CT) methods [39, 23, 24], locally divergence-free discontinuous
Galerkin (DG) [12, 13], central scheme [10, 11] and central DG on overlapping cells of
Cartesian grid [14, 15], and many others [25, 28, 42, 44, 43, 45, 46, 48]. We apologize in
advance to the many important contributors whose work could not be explicitly mentioned
in this paper.

The central scheme on overlapping cells [16] eliminates excessive numerical dissipation
for small time steps of the central scheme of Nessyahu and Tadmor [27] by taking staggered
meshes as a collection of overlapping cells and computing solutions by overlapping cell av-
erages. This scheme is used along with the CT method by Li [10, 11] to solve the MHD
equations without having to deal with Riemann problems, in particular for the electric field
because of the use of overlapping cells. In [17] the central DG scheme on overlapping cells
has been developed, extending the work [16] to finite element methods. General schemes
with arbitrary orders of accuracy, which combine ideas of the CT approach and central
DG schemes on overlapping cells to solve ideal MHD equations, have been developed for
rectangular grids in [14, 15] in which the numerical magnetic field is evolved in an exactly
divergence-free manner.
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In this paper, we develop second-order accurate central and central DG schemes for solv-
ing ideal MHD equations on triangular grids. The essential ingredients of these two schemes
consist of ideas of central schemes or central DG finite element schemes on overlapping cells,
a non-staggered central scheme [9], the TVD Runge-Kutta (RK) time discretization [29, 8],
and new exactly divergence-free reconstruction of the numerical magnetic field on both grids.

Several new ideas are introduced in this paper: 1) A new non-staggered central scheme
combining strategies of [9] and [16] is presented. This scheme removes O

(

1
∆tn

)

dependency
of numerical dissipation associated with the non-staggered central scheme [9]. 2) Although a
triangular grid (or primal grid) and its dual grid are utilized complying the basic ideas of the
central schemes on overlapping cells [16, 17], on the dual grid only the magnetic induction
equation of system (1.1) is defined on the grid edges using the CT formulation; while the
full set of governing equations (1.1) is only solved on the triangular grid. This setup reduces
the computational cost by almost one half compared with the central or central DG schemes
on overlapping cells [10, 11, 14, 15] for solving the ideal MHD equations in which the full
set of governing equations (1.1) is solved on both grids. 3) The globally divergence-free
magnetic field supported on the dual grid on the next time level is computed using the
CT approach and reconstructed by using a new reconstruction procedure. Another new
reconstruction procedure developed in the paper and the new non-staggered central scheme
combining ideas of [9] and [16] are used to reconstruct the globally divergence-free magnetic
field supported on the triangular mesh from the one defined on the dual grid. 4) Using our
method, there is no need to solve the multi-dimensional Riemann problem [42, 44, 43, 45, 46]
for computing the electric field defined on grid nodes when using the CT formulation.

The rest of the paper is organized as follows: Section 2 describes the new non-staggered
central scheme approach combining [9] and [16] for solving conservation laws. Section 3 de-
scribes implementation of the new central DG scheme for solving the ideal MHD equations.
Section 4 is devoted to presenting the new central scheme for solving the ideal MHD equa-
tions. Section 5 outlines the limiting algorithm. Numerical tests are presented in Section 6.
Finally, conclusions are discussed in Section 7.

2 New Non-Staggered Central Scheme Formation

2.1 Review of central schemes

We first review the basic ideas of the non-staggered central scheme [9] and the central scheme
on overlapping cells [16]. Consider a one-dimensional scalar conservation law ∂tu+∂xf(u) = 0
and a grid · · · < xi < xi+1 < xi+2 < · · · . Let xi+1/2 = 1

2
(xi + xi+1), and denote cells

Ki+1/2 = (xi, xi+1) and Di = (xi−1/2, xi+1/2) for any i.
A forward Euler step of the non-staggered central scheme [9] can be described as follows.

Suppose at the time tn, the approximate cell average of u on cell Ki+1/2 is given as U
n

i+1/2 for
any i. A reconstruction procedure can be applied to obtain a piecewise polynomial function
Ũ(x) approximating u(x, tn). Ũ(x) restricted on cell Ki+1/2 is a polynomial for any i. The
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cell average V
n+1

i on cell Di at the time tn+1 is computed as

V
n+1

i =
1

xi+1/2 − xi−1/2

∫ xi+1/2

xi−1/2

Ũ(x)dx− ∆tn

xi+1/2 − xi−1/2

[

f(Ũ(xi+1/2))− f(Ũ(xi−1/2))
]

, ∀i ,

(2.1)
where ∆tn = tn+1− tn. Another reconstruction procedure can be applied to the cell averages

{V n+1

i } to obtain a piecewise polynomial function Ṽ (x), of which the restriction on cell Di

is a polynomial for any i. Finally the new cell average U
n+1

i+1/2 on cell Ki+1/2 at the time tn+1

is obtained by averaging Ṽ (x) over cell Ki+1/2, for any i.
The central scheme on overlapping cells [16] begins with the approximate cell averages of

u(x, t) at the time tn, U
n

i+1/2 and V
n

i , on cell Ki+1/2 and Di, respectively, for any i. A recon-
struction procedure can be applied to these cell averages to obtain a piecewise polynomial
function Ũ(x) approximating u(x, tn), which restricted on cell Ki+1/2 is a polynomial for any

i; and another piecewise polynomial function Ṽ (x) approximating u(x, tn), which restricted
on cell Di is a polynomial for any i. Note that we are describing a different scheme in this
paragraph, though we still use notations similar to those in the above description of the
non-staggered central scheme [9] for convenience. The new cell averages at the time tn+1 on
overlapping cells can be computed as

V
n+1

i = θ
xi+1/2−xi−1/2

∫ xi+1/2

xi−1/2

Ũ(x)dx+

(1− θ)V
n

i − ∆tn

xi+1/2−xi−1/2

[

f(Ũ(xi+1/2))− f(Ũ(xi−1/2))
]

, ∀i ,

and

U
n+1

i+1/2 = θ
xi+1−xi

∫ xi+1

xi

Ṽ (x)dx+

(1− θ)U
n

i+1/2 − ∆tn

xi+1−xi

[

f(Ṽ (xi+1))− f(Ṽ (xi))
]

, ∀i ,

where θ = (tn+1− tn)/∆τn, ∆τn is the largest possible time step size determined by the CFL
condition. The semi-discrete form can be easily obtained as follows (to which a Runge-Kutta
or other time discretization methods can be applied)

d
dt
V i

∣

∣

∣

t=tn
= 1

∆τn

[

1
xi+1/2−xi−1/2

∫ xi+1/2

xi−1/2

Ũ(x)dx− V
n

i

]

−

1
xi+1/2−xi−1/2

[

f(Ũ(xi+1/2))− f(Ũ(xi−1/2))
]

, ∀i ,

and
d
dt
U i+1/2

∣

∣

∣

t=tn
= 1

∆τn

[

1
xi+1−xi

∫ xi+1

xi

Ṽ (x)dx− U
n

i+1/2

]

−
1

xi+1−xi

[

f(Ṽ (xi+1))− f(Ṽ (xi))
]

, ∀i .

The semi-discrete form demonstrates that there is no O
(

1
∆tn

)

error commonly associated
with the staggered averaging. In the following new scheme, this idea is applied to the
previous non-staggered central scheme [9] to remove its O

(

1
∆tn

)

error.

4



2.2 New non-staggered central scheme

Suppose at the time tn, the approximate cell average of u(x, tn) on cell Ki+1/2 is given as

U
n

i+1/2 for any i, and the approximate cell average of u(x, tn) on cell Di is given as V
n

i for
any i. A reconstruction procedure can be applied to obtain a piecewise polynomial function
Ũ(x) approximating u(x, tn). Ũ(x) restricted on cell Ki+1/2 is a polynomial for any i. The

cell average V
n+1

i on cell Di at the time tn+1 is computed as

V
n+1

i = θ
xi+1/2−xi−1/2

∫ xi+1/2

xi−1/2

Ũ(x)dx+

(1− θ)V
n

i − ∆tn

xi+1/2−xi−1/2

[

f(Ũ(xi+1/2))− f(Ũ(xi−1/2))
]

, ∀i ,
(2.2)

where θ = (tn+1 − tn)/∆τn ∈ [0, 1], ∆τn is the largest possible time step size determined by
the CFL condition. The semi-discrete form is described as follows

d
dt
V i

∣

∣

∣

t=tn
= 1

∆τn

[

1
xi+1/2−xi−1/2

∫ xi+1/2

xi−1/2

Ũ(x)dx− V
n

i

]

−

1
xi+1/2−xi−1/2

[

f(Ũ(xi+1/2))− f(Ũ(xi−1/2))
]

, ∀i .

After obtaining the cell average V
n+1

i for every i, another reconstruction procedure can be
applied to these averages to obtain a piecewise polynomial function Ṽ (x), which restricted

on cell Di is a polynomial for any i. Finally the new cell average U
n+1

i+1/2 on cell Ki+1/2

at the time tn+1 is obtained by averaging Ṽ (x) over cell Ki+1/2, for any i. Note that the
forward Euler component step (2.2) can be reformulated as a convex combination of the
non-staggered central scheme [9] and the solution at the previous time V n

i

V
n+1

i = (1− θ)V
n

i +

θ

{

1
xi+1/2−xi−1/2

∫ xi+1/2

xi−1/2

Ũ(x)dx− ∆τn

xi+1/2 − xi−1/2

[

f(Ũ(xi+1/2))− f(Ũ(xi−1/2))
]

}

, ∀i .

(2.3)
Therefore we have the following theorem.

Theorem. If the forward Euler step (2.1) of the non-staggered central scheme [9] is TVD
(with a suitable nonlinear reconstruction procedure) with the time step size ∆τn, then the
new scheme (2.2) is also TVD for any time step size ∆tn satisfying 0 ≤ ∆tn ≤ ∆τn.

3 Central DG Scheme Formulation for Solving Ideal

MHD Equations

In this section, we present the new central DG scheme on overlapping cells for solving
the ideal MHD equations. For simplicity, we use the forward Euler method as the time
discretization method during the discussion. Higher-order accuracy in time can be achieved
by using the TVD RK method [29, 8] or the strong stability preserving method [26].
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The physical domain Ω ⊂ R2 is partitioned into a collection of triangular cells

Th = {Ki, i = 1, ...,NT } (3.1)

so that Ω =
⋃NT

i=1Ki. Th is the primal mesh. For simplicity, we assume that no vertex of one
triangle lies on the interior of an edge of another triangle.

Let the dual grid of Th be Wh = {Dj, j = 1, ...,NW}. Dj is formed by joining centroids
of triangles meeting at a common grid node of Th. Each dual grid cell is further partitioned
into a set of partial cells. See Fig. 1 for example. Dual cell D1 is partitioned into a col-
lection of partial cells denoted as T1,1, T2,1, . . . , T6,1 formed by connecting individual vertices
V 1, V 2, . . . , V 6 of D1 with the node O of grid Th, respectively. Vertices V 1, V 2, . . . , V 6 are
centroids of triangular cells K1,K2, . . . ,K6 of the primal mesh. These partial cells will be
used when the globally divergence-free magnetic field on Wh is reconstructed.

T3
T2

T4

T5
T6

T1

D1

K2

K3

K4

K5
K6

O
V1

V2

V3

V4

V5
V6

K1

W1

W2
W3

W4

W5
W6

Figure 1: Schematic of overlapping grid.

For the convenience of discussion, we introduce two vectors U = (ρ, ρux, ρuy, ρuz, ε, Bz)
t

and BB = (Bx, By)
t, and rewrite Eq. (1.1) as a combination of two sub-systems, namely,

Eq. (3.2) and Eq. (3.4), respectively.
Here

∂tU + ∂xF(U,B
B) + ∂yG(U,BB) = 0 , (3.2)

where

F(U,BB) =

















ρux
ρu2x + p−B2

x

ρuxuy − BxBy

ρuxuz −BxBz

(ε+ p)ux −Bx(u ·B)
−(uzBx − uxBz)

















, G(U,BB) =

















ρuy
ρuxuy − BxBy

ρu2y + p−B2
y

ρuyuz − ByBz

(ε+ p)uy − By(u ·B)
(uyBz − uzBy)

















.

(3.3)
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And
∂tB

B + ∂xF
B(U,BB) + ∂yG

B(U,BB) = 0 , (3.4)

where

FB(U,BB) =

(

0
uxBy − uyBx

)

, GB(U,BB) =

(

−uxBy + uyBx

0

)

. (3.5)

The numerical solutions to U and BB on grid Th are denoted as Un
Th

≡ UTh(x, t
n) and

Bn
Th

≡ BTh(x, t
n) at the time t = tn respectively, where x = (x, y). On grid Wh, only the

x- and y-component of the magnetic induction equation, namely, Eq. (3.4) is solved. The
approximate solution to BB on Wh is denoted as Bn

Wh
≡ BWh

(x, tn).
The following discrete space is used for approximating U on the grid Th:

UTh =
{

v ∈
[

L2(Ω)
]6

: v|Ki
∈ [P q(Ki)]

6 , ∀Ki ∈ Th

}

, (3.6)

where P q(Ki) represents the space of polynomials of degrees no more than q supported on
cell Ki.

We introduce the following divergence-free vector space for approximating BB on both
Th and Wh:

BTh =
{

v ∈ H(div0; Ω) : v|Ki
∈ [P q(Ki)]

2 , ∀Ki ∈ Th

}

=
{

v : v|Ki
∈ Πq(Ki), and the normal component of v

is continuous across ∂Ki, ∀Ki ∈ Th

}

,

BWh
=

{

v ∈ H(div0; Ω) : v|Ts,i
∈ [P q(Ts,i)]

2 , ∀ partial cell Ts,i ∈ Di, ∀Di ∈ Wh

}

,

(3.7)

H(div0; Ω) =
{

v ∈ H(div; Ω) : ∇ · v = 0
}

,

H(div; Ω) =
{

v ∈ [L2(Ω)]
2
: ∇ · v ∈ L2(Ω)

}

,

Πq(C) =
{

v ∈ [P q(C)]2 ,∇ · v|C = 0, C is a cell in Th or a partial cell in Wh

}

.

(3.8)

The numerical solutions Bn
Wh

∈ BWh
and Bn

Th
∈ BTh at the time t = tn.

We also define the following locally divergence-free vector space on grid Th:

BTh,loc =
{

v : v|Ki
∈ Πq(Ki), ∀Ki ∈ Th

}

. (3.9)

In each time step, the new central DG scheme uses a computation and a reconstruc-

tion sub-step to compute the approximate solutions to Eqs. (3.2) and (3.4), and they are
detailed in Alg. 1.
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Algorithm 1: Numerical Algorithm of the Central DG Scheme

• Computation sub-step: suppose Un
Th
, Bn

Wh
and Bn

Th
are given.

1. Compute Un+1
Th

∈ UTh and Bn+1
Th,loc

∈ BTh,loc supported on grid cells of Th.

2. Compute bn+1
Wh

supported on grid edges of Wh.

• Reconstruction sub-step: suppose bn+1
Wh

, Un+1
Th

and Bn+1
Th,loc

are given.

1. Limit Un+1
Th

and Bn+1
Th,loc

if necessary when solving shock wave problems.

2. Limit bn+1
Wh

if necessary when solving shock wave problems.

3. Reconstruct Bn+1
Wh

∈ BWh
on grid cells of Wh by using bn+1

Wh
and Bn+1

Th,loc
.

4. Reconstruct Bn+1
Th

∈ BWh
on grid cells of Th by using Bn+1

Wh
.

bn+1
Wh

is the numerical solution of the normal component of the magnetic field supported
on grid edges of Wh at time t = tn+1.

Implementation of these sub-steps is described in the following subsections.

3.1 Updating Un+1
Th on Th

Given the approximate solution Un
Th

supported on grid Th, and Bn
Wh

supported on grid

Wh, we proceed to compute the approximate solution Un+1
Th

∈ UTh of Eq. (3.2) at the next
time level, tn+1 = △tn + tn by using a DG scheme with a numerical flux function utilizing
information from solutions defined on both grids.

Let U
(i)
h,k(x, t) denote the kth (k = 1, . . . , 6) component of the approximate solution

UTh(x, t) to Eq. (3.2) restricted on cell Ki. We use the following basis function set for

representing U
(i)
h,k(x, t):

{

φ
(i)
m (x) : m = 0, . . . , r

}

≡
{

1, (x−xi)√
|Ki|

, (y−yi)√
|Ki|

, (x−xi)
2

(
√

|Ki|)2
,

(x−xi)(y−yi)

(
√

|Ki|)2
, (y−yi)

2

(
√

|Ki|)2
, . . . , (y−yi)

q

(
√

|Ki|)q

}

,
(3.10)

where xi ≡ (xi, yi) is the centroid of Ki, r = (q + 1)(q + 2)/2− 1 and |Ki| is the area of cell
Ki. These are monomials of the 2D Taylor expansion about the cell centroid (xi, yi), scaled
by the area of the cell raised to proper powers. In this paper, we only consider the case of
q = 1.

U
(i)
h,k(x, t) then is represented by

U
(i)
h,k(x, t) =

r
∑

m=0

Û
(i)
m,k(t)φ

(i)
m (x) . (3.11)

The semi-discrete DG scheme for solving each component of Eq. (3.2) to obtain Un+1
Th

is formulated as: For each k = 1, . . . , 6 and ∀Ki ∈ Th, find U
(i)
h,k(x, t) such that for every
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φ
(i)
m , m = 0, . . . , r,

d
dt

∫

Ki

U
(i)
h,k(x, t)φ

(i)
m dx =

−
∑

e∈∂Ki

∫

e

he,k(x, t)φ
(i)
m dΓ +

∫

Ki

(Fk(UTh ,BWh
), Gk(UTh,BWh

)) · ∇φ(i)
m dx ,

(3.12)

where Fk and Gk are the kth component of fluxes F and G, respectively, e is any edge of Ki.
It is important to note that BWh

is the magnetic field solution defined on grid Wh (the idea
of the central DG scheme on overlapping cells is adopted here). Let νe,i be the outward unit
normal of edge e of cell Ki, and he,k be the numerical flux function. In this paper, he,k is the
Lax-Friedrich flux function which reads:

he,k(x, t) =
1
2

[

(Fk (UTh,in,BWh
) , Gk (UTh,in,BWh

)) + (Fk (UTh,out,BWh
) , Gk (UTh,out,BWh

))
]

· νe,i
+α

2
(Uh,k,in − Uh,k,out) ,

(3.13)
where α = max(|u| + c). c is the speed of the fast magneto-acoustic wave [6]. The kth

components of UTh,in and UTh,out are defined by

Uh,k,in(x, t) = lim
y→x,y∈Kint

i

U
(i)
h,k(y, t) , (3.14)

Uh,k,out(x, t) = lim
y→x,y/∈Ki

U
(i)
h,k(y, t) , (3.15)

and Kint
i indicates the interior of cell Ki.

The forward Euler time discretization for discretizing Eq. (3.12) is: For each k = 1, . . . , 6

and ∀Ki ∈ Th, find U
(i)
h,k(x, t

n+1) such that for every φ
(i)
m , m = 0, . . . , r,

∫

Ki

U
(i)
h,k(x, t

n+1)φ(i)
m dx−

∫

Ki

U
(i)
h,k(x, t

n)φ(i)
m dx =

−△tn
∑

e∈∂Ki

∫

e

he,k(x, t
n)φ(i)

m dΓ +△tn
∫

Ki

(

Fk(U
n
Th
,Bn

Wh
), Gk(U

n
Th
,Bn

Wh
)
)

· ∇φ(i)
m dx .

(3.16)
Integrals in Eq. (3.16) are evaluated by appropriate Gaussian quadrature rules [5].

The divergence-free BTh could also be used in (3.12) as in conventional CT schemes on
non-staggered grids. In this paper the divergence free BWh

is firstly computed through a
central scheme followed by a CT reconstruction on the dual mesh, then the divergence-free
BTh is computed on the triangular mesh from BWh

. Therefore BTh should contain larger
error than BWh

. Also BWh
is continuous across cell edges of a triangular cell while BTh isn’t

(only its normal component is), which makes the computation of fluxes in Eq. (3.12) easier.

Numerical tests also show that U
(i)
h,k(x, t

n+1) computed with using BTh in flux evaluation has
error larger than that computed with using BWh

in flux evaluation.

3.2 Updating Bn+1
Th,loc on Th

Given Bn
Th

and Un
Th

supported on grid Th and Bn
Wh

supported on grid Wh, the approximate

solution Bn+1
Th,loc

∈ BTh,loc to Eq. (3.4) at the next time level tn+1 = △tn + tn is computed.

9



This solution will be used to help reconstruct globally divergence-free magnetic field Bn+1
Wh

on the dual grid Wh.
We modify the central DG scheme on overlapping cells to compute Bn+1

Th,loc
. Details of the

modification are given as follows.
When q = 1, the following basis is used to span the local space Πq(Ki) for BTh,loc(x, t)

restricted on cell Ki:

{

ψ(i)
s (x), s = 0, . . . , 4

}

≡







(

1
0

)

,

(

0
1

)

,





x−xi√
|Ki|

− y−yi√
|Ki|



 ,

(

y−yi√
|Ki|

0

)

,

(

0
x−xi√
|Ki|

)







.

(3.17)

Let’s use B
(i)
Th,loc

(x, t) to denote the locally divergence-free solution to Eq. (3.4) supported

on Ki. B
(i)
Th,loc

(x, t) is represented by:

B
(i)
Th,loc

(x, t) =

4
∑

s=0

B̂(i)
s (t)ψ(i)

s (x) . (3.18)

The semi-discrete modified central DG scheme to solve Eq. (3.4) to obtain Bn+1
Th,loc

is

formulated as: ∀Ki ∈ Th, find B
(i)
Th,loc

(x, t) ∈ Πq(Ki) such that for every ψ
(i)
s , s = 0, . . . , 4,

d
dt

∫

Ki

B
(i)
Th,loc

(x, t) ·ψ(i)
s dx

∣

∣

∣

t=tn
=

1

∆τn

∫

Ki

(

Bn
Wh

−Bn
Th

)

·ψ(i)
s dx

−
∑

e∈∂Ki

∫

e

ψ(i)
s ·

((

FB(Un
Th
,Bn

Wh
),GB(Un

Th
,Bn

Wh
)
)

· νe,i
)

dΓ

+

∫

Ki

(

FB(Un
Th
,Bn

Wh
),GB(Un

Th
,Bn

Wh
)
)

· ∇ψ(i)
s dx ,

(3.19)

where ∆τn is the upper bound for the time step size due to the CFL restriction at tn. Notice
that the initial value used to solve Eq. (3.19) is Bn

Th
, which is globally divergence-free.

For example, when the forward Euler time discretization is employed to discretize Eq. (3.19),

the fully discrete scheme reads as: ∀Ki ∈ Th, find B
(i)
Th,loc

(x, tn+1) ∈ Πq(Ki) such that for

every ψ
(i)
s , s = 0, . . . , 4,

∫

Ki

B
(i)
Th,loc

(x, tn+1) ·ψ(i)
s dx−

∫

Ki

B
(i)
Th
(x, tn) ·ψ(i)

s dx =
△tn
∆τn

∫

Ki

(

Bn
Wh

−Bn
Th

)

·ψ(i)
s dx

−△tn
∑

e∈∂Ki

∫

e

ψ(i)
s ·

((

FB(Un
Th
,Bn

Wh
),GB(Un

Th
,Bn

Wh
)
)

· νe,i
)

dΓ

+△tn
∫

Ki

(

FB(Un
Th
,Bn

Wh
),GB(Un

Th
,Bn

Wh
)
)

· ∇ψ(i)
s dx .

(3.20)
Eq. (3.19) is a central DG scheme on overlapping cells ([16, 17]) taking advantage of

the presence of Bn
Wh

on the dual mesh. The role of the term with Bn
Wh

−Bn
Th

is to provide

sufficient amount of diffusion to stabilize the computation of B
(i)
Th,loc

, similar to the role of the
diffusive term in a Lax-Friedrichs flux (see e.g. [38]). One could also update the magnetic
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field on the triangular mesh directly without using Bn
Wh

, see [12]. Note that in Eqs. (3.19)
and (3.20), Un

Th
defined on the primal grid is used to evaluate the flux function because Un

Th
is only supported on grid Th. Since Un

Th
is not continuous across cell edges, an arithmetic

average of the jump values of the fluxes is used (which is also the Lax-Friedrichs flux because
Bn

Wh
is continuous here).

3.3 Updating bn+1
Wh

on Wh

In this sub-section, the central DG scheme in combination with the CT framework is desig-
nated to compute the approximate solution bn+1

Wh
, the normal component of the magnetic field

defined on each of the grid edges of Wh at the time level tn+1. Note that the numerical mag-
netic field is globally divergence-free if and only if the normal component of the numerical
magnetic field is continuous across the element interfaces. Therefore, we first compute bn+1

Wh
,

and then reconstruct Bn+1
Wh

element-by-element on all Dj ∈ Wh so that ∇ ·Bn+1
Wh

= 0 in the

interior of partial cells of Dj and the normal component of Bn+1
Wh

defined on the interfaces of

Dj matches with bn+1
Wh

supported on Dj interfaces exactly. Moreover, the normal component

of Bn+1
Wh

is continuous across interfaces of partial cells.
Denote Lh = {eW ,  = 1, . . . ,Ne} the set of grid edges of the dual grid Wh. e

W
 connects

centroids of triangular cells of Th. Let the unit edge normal of the edge eW be νW
 and

tangent be ζW . ζW is obtained by rotating νW
 90 degrees in the counterclockwise direction.

On each eW , we rewrite Eq. (3.4) by contributions of BB in the directions of νW
 and ζW

to obtain

∂t

(

bνW
bζW

)

+ ∂ν

(

0
uνbζW − uζbνW

)

+ ∂ζ

( −uνbζW + uζbνW
0

)

= 0 , (3.21)

where bνW = BB ·νW
 , bζW = BB ·ζW , and uν and uζ are the components of the velocity u in

the νW
 and ζW directions, respectively. (ν, ζ) is the coordinate in the

(

νW
 , ζ

W


)

coordinate
system.

Along the ζW direction, let x0, and x1, be the starting and ending points of edge eW
which is parametrized by

x(ζ̂) =
x0, + x1,

2
+

x1, − x0,

2
ζ̂ , ζ̂ ∈ [−1, 1] . (3.22)

With this affine mapping we can consider the first equation of (3.21) on a reference spatial

coordinate of ζ̂ ∈ [−1, 1]. Denote b
()
h (·, t) the numerical approximation to bνW (·, t) supported

on edge eW . The basis used to span the polynomial space P q
(

ζ̂

)

(q = 1) for representing

b
()
h is

{

ϕs(ζ̂), s = 0, 1
}

≡
{

1, ζ̂

}

. (3.23)

Let

b
()
h (ζ̂, t) =

1
∑

s=0

b̂()s (t)ϕs(ζ̂) . (3.24)
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The first equation of (3.21) is solved by the central DG scheme on overlapping cells.
Computations are performed using an affine transformation which maps integrals over eW
to integrals with respect to ζ̂ ∈ [−1, 1] on which the basis functions are defined. The

semi-discrete central DG method for computing b
()
h, (ζ̂, t

n+1) is formulated as follows:

∀eW ∈ Lh, find b
()
h, (ζ̂, t), a linear polynomial in ζ̂ ∈ [−1, 1], such that for any ϕs(ζ̂), s =

0, 1,

d
dt

∫ 1

−1

b
()
h ϕsdζ̂

∣

∣

∣

t=tn
=

1

∆τn

∫ 1

−1

(

b
()
Th
(tn)− b

()
h (tn)

)

ϕsdζ̂

− 2

| eW |

[

Ez,Th(ζ̂)ϕs

∣

∣

∣

1

−1
−
∫ 1

−1

Ez,Th(ζ̂)
dϕs

dζ̂
dζ̂

]

,
(3.25)

where b
()
Th
(tn) is Bn

Th
· ν restricted on edge eW , Ez,Th is the z-component of the electric field

E defined on Th, and | eW | is the length of edge eW . As before, Eq. (3.25) can be discretized
by the forward Euler time discretization as a component of the TVD Runge-Kutta method.

By letting ϕs = 1 in Eq. (3.25), it is easy to verify that b
()
h, (ζ̂, t

n+1) satisfies the following
compatibility condition

∫

∂Dj

b
()
h (tn+1)dζ̂ = 0 , ∀Dj ∈ Wh and b

()
h (tn+1) is supported on ∂Dj , (3.26)

provided Bn
Th

and Bn
Wh

is globally divergence-free.
With this compatibility condition, we proceed to do element-by-element divergence-free

reconstruction to obtain Bn+1
Wh

. The reconstruction algorithm is described in the following
sub-section.

3.4 Reconstructing exactly divergence-free Bn+1
Wh

on Wh

An algorithm to reconstruct a piecewise linear and globally divergence-free magnetic field
Bn+1

Wh
on Wh is discussed in this section. The reconstructed Bn+1

Wh
satisfies the divergence-free

condition in the interior of any partial cell. The normal component of the reconstructed Bn+1
Wh

is continuous across cell edges of partial cells and dual cells, and also retains consistency at

the boundary of a dual cell, namely,
(

Bn+1
Wh

· νW


)

∣

∣

∣

eW

= b
()
h (·, tn+1).

The reconstruction is a local process and proceeds dual cell-by-dual cell. Consider to
reconstruct Bn+1

Wh
on dual cell D1, as shown in Fig. 1. On each of its partial cell Tℓ,1,

ℓ = 1, . . . , 6, let (Bx,Tℓ,1
, By,Tℓ,1

)t denote the reconstructed magnetic field restricted on Tℓ,1 at
time tn+1, i.e.,

(Bx,Tℓ,1
, By,Tℓ,1

)t = Bn+1
Wh
χTℓ,1

(x, y) . (3.27)

Note that D1 =
⋃6

ℓ=1 Tℓ,1, and χTℓ,1
(x, y) is the characteristic function supported on partial

cell Tℓ,1. (Bx,Tℓ,1
, By,Tℓ,1

)t is represented by the following form in the present paper

{

Bx,Tℓ,1
(x, y) = a0,Tℓ,1

+ a1,Tℓ,1
x+ a2,Tℓ,1

y
By,Tℓ,1

(x, y) = b0,Tℓ,1
+ b1,Tℓ,1

x+ b2,Tℓ,1
y

, (3.28)

and 36 conditions are needed to determine uniquely (Bx,Tℓ,1
, By,Tℓ,1

)t for ℓ = 1, . . . , 6.
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The divergence-free condition, namely, ∇ · (Bx,Tℓ,1
, By,Tℓ,1

) = 0, leads to the following
equation:

a1,Tℓ,1
= −b2,Tℓ,1

, ℓ = 1, . . . , 6. (3.29)

This eliminates six unknown coefficients, or reduces one degree of freedom in reconstructing
each (Bx,Tℓ,1

, By,Tℓ,1
)t.

Let the edge of partial cell Tℓ,1 connecting two adjacent vertices of D1 be eW . eW is
actually in the edge set Lh of the dual gridWh. See Fig. 1 for example. T1,1’s edge connecting
V 1 and V 2, T2,1’s edge connecting V 2 and V 3 and so on are this type of edges. On eW ,
(Bx,Tℓ

, By,Tℓ
)t needs to satisfy

(Bx,Tℓ,1
, By,Tℓ,1

) · νW
 = b

()
h

(

x, tn+1
)

, ℓ = 1, . . . , 6. (3.30)

Notice that b
()
h (x, tn+1) is computed by the scheme presented in sub-section 3.3.

Let Tℓ,1 and Tℓ+1,1 be two partial cells belonging to the same dual cell D1 and be edge
adjacent neighbors. Use eD1

ℓ to denote the edge shared by partial cells Tℓ,1 and Tℓ+1,1. See
Fig. 1 for example. eD1

ℓ consists of edges connecting O and V 1, O and V 2, ..., and O and
V 6. Let the unit edge normal of eD1

ℓ be νD1

ℓ . On each eD1

ℓ for ℓ = 1, . . . , 6, the magnetic field
(Bx,Tℓ,1

, By,Tℓ,1
)t needs to satisfy:

(Bx,Tℓ,1
, By,Tℓ,1

) · νD1
ℓ = (Bx,T(ℓ+1,1) mod 6

, By,T(ℓ+1,1) mod 6
) · νD1

ℓ , ℓ = 1, . . . , 6. (3.31)

Here ”mod” is the modulus operator.
Eqs. (3.30) and (3.31) give 24 conditions in which only 23 of them are linearly indepen-

dent, which is easy to understand. In fact, conditions (3.29) and (3.31) already imply that
the reconstructed magnetic field in dual cell D1 is divergence-free, which then implies that
the net influx of the magnetic field across the boundary of cell D1 is zero. Therefore one
equation of the condition (3.30), which is that the first moment of b

()
h (x, tn+1) is equal to the

constant part of (Bx,T1,1 , By,T1,1) ·νW
 is redundant and can be removed from the constraints.

To reconstruct (Bx,Tℓ,1
, By,Tℓ,1

)t for ℓ = 1, . . . , 6, yet 36 conditions are needed. The rest
conditions are given in the least-squares sense as follows. The reconstructed (Bx,Tℓ,1

, By,Tℓ,1
)t

is required to be equal to Bn+1
Th,loc

at certain locations on Th in the least-squares sense. In this

paper, 4 values of Bn+1
Th,loc

at 4 different locations are used for determining (Bx,Tℓ,1
, By,Tℓ,1

)t.

Take (Bx,T1,1, By,T1,1)
t supported on T1,1 of D1 in Fig. 1 for example. Bn+1

Th,loc
(V 1) and

Bn+1
Th,loc

(V 2) are used. They are Bn+1
Th,loc

evaluated at vertices V 1 and V 2, respectively. De-
note the midpoint of the edge connecting O and V 1 as M1 and the midpoint of the edge
connecting O and V 2 as M2. (Bx,T1,1, By,T1,1)

t also equals to Bn+1
Th,loc

(M1) and Bn+1
Th,loc

(M2) in
the least-squares sense, respectively.

Eqs. (3.29), (3.30) and (3.31), together with these least-squares constraints are solved by
the linearly constrained least-squares method to determine (Bx,Tℓ,1

, By,Tℓ,1
)t, for ℓ = 1, . . . , 6.

On each dual cell, this reconstruction procedure is applied. Thus a piecewise linear Bn+1
Wh

restricted on dual cell Dj is given by

Bn+1
Wh

∣

∣

∣

x∈Tℓ,j

= (Bx,Tℓ,j
, By,Tℓ,j

)t , Tℓ,j ∈ Dj , j = 1, . . . ,NW .
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3.5 Reconstructing exactly divergence-free Bn+1
Th on Th

Bn+1
Th

is constructed on the primal triangular mesh out of Bn+1
Wh

which is defined on the dual

mesh, following a CT strategy. The first step is to obtain a linear polynomial b
(̂ı),n+1
T on each

primal cell edge which is a second order approximation to the normal component of Bn+1
Wh

on the same edge, and ensure that the average of the linear polynomial is equal to that of
the normal component of Bn+1

Wh
on the cell edge (therefore, the net flux across edges of a

primal triangular cell will be zero). Using the computed linear polynomial b
(̂ı),n+1
T on each

primal cell edge as the common normal component (for the two cells sharing the same edge)
to construct a piecewise linear Bn+1

Th
on the primal triangular mesh, which is divergence-free

wherever it’s smooth, Bn+1
Th

will be a second order approximation to Bn+1
Wh

and have zero net
flux across the boundary of any simply connected sub-domain.

Two steps are taken to reconstruct exactly divergence-free Bn+1
Th

. In the first step, Bn+1
Wh

is projected onto grid edges of the grid Th. Denote LT
h = {eTı̂ , ı̂ = 1, . . . ,N T

e } the set of grid
edges of Th. Let the unit edge normal and tangent of edge eTı̂ be νT

ı̂ and ζTı̂ respectively.
ζTı̂ is obtained by rotating νT

ı̂ 90 degrees in the counterclockwise direction.
Let xT

0,̂ı and xT
1,̂ı be the starting and ending points of edge eTı̂ in the ζTı̂ direction. eTı̂ is

parametrized by

xT (η̂ı̂) =
xT
0,̂ı + xT

1,̂ı

2
+

xT
1,̂ı − xT

0,̂ı

2
η̂ı̂ , η̂ı̂ ∈ [−1, 1] . (3.32)

For convenience in discussion, we also use the notation eTl,i, l = 1, 2, 3 to denote edges of Ki.

Denote b
(̂ı),n+1
T the approximate solution to the normal component of BB on edge eTı̂ at

the time level tn+1, b
(̂ı),n+1
T is obtained by L2 projection of Bn+1

Wh
onto eTı̂ as follows:

∫ 1

−1

b
(̂ı),n+1
T ψ

∣

∣

∣

∣

∂xT (η̂ı̂)

∂η̂ı̂

∣

∣

∣

∣

dη̂ı̂ =

∫ 1

−1

Bn+1
Wh

(x(η̂ı̂), y(η̂ı̂)) ·νT
ı̂ ψ

∣

∣

∣

∣

∂xT (η̂ı̂)

∂η̂ı̂

∣

∣

∣

∣

dη̂ı̂ , ∀ψ ∈ P 1(η̂ı̂) (3.33)

A simpler implementation could also be used to obtain b
(̂ı),n+1
T . Note that edge eTı̂ passes

through two dual cells. See Fig. 1 for example. The first moment of b
(̂ı),n+1
T which is a linear

polynomial in the paper is then set to be equal to the average of Bn+1
Wh

(x(η̂ı̂), y(η̂ı̂)) ·νT
ı̂ over

edge eTı̂ to conserve the flux, and the second moment of b
(̂ı),n+1
T can be obtained by averaging

the second moments of the Bn+1
Wh

(x(η̂ı̂), y(η̂ı̂)) · νT
ı̂ on the two dual cells crossed by eTı̂ .

Let (Bx,i, By,i)
t be Bn+1

Th
restricted on triangular cell Ki, and be represented by

{

Bx,i(x, y) = a0,i + a1,ix+ a2,iy ,
By,i(x, y) = b0,i + b1,ix+ b2,iy .

(3.34)

The divergence-free condition ∇ · (Bx,i, By,i)
t = 0 gives the equation:

a1,i = −b2,i . (3.35)

On each edge eTl,i of Ki, (Bx,i, By,i)
t is required to satisfy:

(

(Bx,i, By,i)
t · νT

l,i

)

(η̂ı̂) = b
(̂ı),n+1
T (η̂ı̂) , l = 1, 2, 3 . (3.36)
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Note that one equation of the condition (3.36), namely, the first moment of
(

(Bx,i, By,i)
t · νT

1,i

)

(η̂ı̂)

is equal to the first moment of b
(̂ı),n+1
T (η̂ı̂) on e

T
1,i, is redundant because condition (3.35) al-

ready implies that the net influx across the boundary of Ki is zero. Solving Eqs. (3.35)-(3.36)
for a0,i, . . . , a2,i and b0,i, . . . , b2,i uniquely determines (Bx,i, By,i)

t on Ki at time level tn+1.
On each cell of Th, the above procedure is applied to reconstruct a divergence-free mag-

netic field. Bn+1
Th

is defined as

Bn+1
Th

∣

∣

∣

x∈Ki

= (Bx,i, By,i)
t , i = 1, . . . ,NT .

Moreover, for any two cellsKi andKi′ sharing a common edge eTı̂ , (Bx,i, By,i)
t and (Bx,i′, By,i′)

t

defined on the two cells have the same normal component of the magnetic field on eTı̂ . There-
fore Bn+1

Th
is exactly divergence-free.

When the solution contains discontinuities, a limiting procedure is needed. The limiting
algorithm for reconstructing the central DG solution is outlined in Sec. 5.

4 Central Scheme Formulation for Solving Ideal MHD

Equations

The central DG formulation discussed in the previous section can also be done similarly with
a finite volume version.

Let U
(i)

h,k(t) be the cell average of the kth(k = 1, . . . , 6) component of the approximate

solution of U(x, t) on Ki. The semi-discrete finite volume scheme for solving U
(i),n+1

h,k ≡
U

(i)

h,k(t = tn+1) on cell Ki is

d

dt
U

(i)

h,k(t) = − 1

|Ki|
∑

e∈∂Ki

∫

e

he,k(x, t)dΓ , ∀Ki ∈ Th , (4.1)

where he,k(x, t) is defined in Eq. (3.13).

Let B
(i)

Th,�
(t) be the cell average of the x- or y-component (indicated by �) of the ap-

proximate solution of BB(x, t) on Ki. The semi-discrete central scheme for solving B
n+1

Th,�
≡

B
(i)

Th,�
(t = tn+1) on cell Ki is

d
dt
B

(i)

Th,�
(t)
∣

∣

∣

t=tn
=

1

△τn
(

1

|Ki|

∫

Ki

BWh,�(x, t
n)dx−B

(i)

Th,�
(tn)

)

− 1

|Ki|
∑

e∈∂Ki

∫

e

(

FB
� (UTh ,BWh

), GB
� (UTh,BWh

)
)

· νe,idΓ

∀Ki ∈ Th .

(4.2)

Note that

B
(i)

Th,�
(tn) =

1

|Ki|

∫

Ki

BTh,�(x, t
n)dx

with (BTh,x(x, t
n), BTh,y(x, t

n))t ≡ Bn
Th
. And (BWh,x(x, t

n), BWh,y(x, t
n))t ≡ Bn

Wh
.
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Let b
()

Wh
(·, t) be the approximation to the edge average of the normal component of the

magnetic field (in ν direction) on edge eW of grid Wh. b
()

Wh
(·, t) is obtained by solving the

first equation of (3.21).

The semi-discrete central scheme for solving b
()

Wh
(·, tn+1) is

d
dt
b
()

Wh
(t)
∣

∣

∣

t=tn
= 1

△τn

(

b
()

Th
(tn)− b

()

Wh
(tn)

)

− 2

| eW |

(

Ez,Th(ζ̂)
∣

∣

∣

1

−1

)

,

∀eW ∈ Lh ,
(4.3)

where b
()

Th
(tn) is the edge average of the normal component of Bn

Th
(in ν direction) on e

W
 .

A closed form of the central scheme is outlined as follows.

Algorithm 2: Numerical Algorithm of Central Scheme

• Computation sub-step: suppose Un
Th
, Bn

Wh
and Bn

Th
are given.

1. Compute cell averages {U (i)

h,k(t
n+1)} and {B(i)

Th,�
(tn+1)} supported on grid cells of

Th.

2. Compute edge averages {b()Wh
(tn+1)} supported on grid edges of Wh.

• Reconstruction sub-step: suppose {U (i)

h,k(t
n+1)}, {B(i)

Th,�
(tn+1)} and {b()Wh

(tn+1)} are
given.

1. Reconstruct piecewise linear Un+1
Th

and Bn+1
Th,loc

∈ BTh,loc on grid Th by using cell

averages {U (i)

h,k(t
n+1)} and {B(i)

Th,�
(tn+1)} respectively.

2. Reconstruct piecewise linear bn+1
Wh

by using {b()Wh
(tn+1)} and Bn+1

Th,loc
.

3. Reconstruct Bn+1
Wh

∈ BWh
on grid cells of Wh by using bn+1

Wh
and Bn+1

Th,loc
.

4. Reconstruct Bn+1
Th

∈ BTh on grid cells of Th by using Bn+1
Wh

.

4.1 Finite volume reconstruction

In Alg. 2, we need to reconstruct piecewise linear functions from given cell averages or edge
averages. In this subsection, we solve the following two reconstruction problems for this
purpose:
Reconstruction problem 1. Given cell average values vi of a function v(x, y) on each cell
Ki, reconstruct an essentially non-oscillatory (ENO) polynomial vi(x, y) of degree at most 1
on each cell Ki which has its mean value vi and is a second-order accurate approximation
to v(x, y) on Ki (where v(x, y) is smooth). This is a classical MUSCL or second order ENO
reconstruction. The following expression of a first degree polynomial vi(x, y) supported on
Ki is used:

vi(x, y) = a0,i + a1,i
x− xi
|Ki|

+ a2,i
y − yi
|Ki|

, (4.4)

where (xi, yi) is the centroid of Ki.
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For the ideal MHD problem, at the end of every Runge-Kutta stage, this reconstruction
is used to obtain each component of UTh(x, t) and BTh,loc(x, t).

Reconstruction problem 2. For each grid edge eW of Wh, reconstruct a b
()
Wh

∈ P 1(ζ̂)
supported on eW such that

1

2

∫ 1

−1

b
()
Wh

∣

∣

∣

∣

∣

∂eW (x)

∂ζ̂

∣

∣

∣

∣

∣

dζ̂ = b
()

Wh
.

After these two reconstruction problems are solved, the algorithm described in Sec. 3.4
is used to reconstruct exactly divergence-free Bn+1

Wh
on Wh. Then the algorithm described in

Sec. 3.5 is used to reconstruct exactly divergence-free Bn+1
Th

on Th.

4.1.1 Reconstructing UTh(x, t
n+1) and BTh,loc(x, t

n+1) on cells of Th

Reconstruction problem 1 is solved as follows. Denote U
(i)
h,k(x, t) ∈ P 1(Ki), the re-

constructed kth component of UTh(x, t) on Ki and B
(i)
Th,loc

(x, t) ∈ Π1(Ki) the reconstructed

locally divergence-free magnetic field on Ki, B
(i)
Th,loc

(x, t) ≡
(

B
(i)
Th,loc,x

(x, t), B
(i)
Th,loc,y

(x, t)
)t

.

And BTh,loc(x, t)
∣

∣

∣

x∈Ki

= B
(i)
Th,loc

(x, t).

Let vi(x, y) be either U
(i)
h,k(x, t) or the x- or y-component of

(

B
(i)
Th,loc,x

(x, t), B
(i)
Th,loc,y

(x, t)
)t

.

Its approximate cell average vi is computed by either Eq. (4.1) or Eq. (4.2). The procedure
for reconstructing vi(x, y) is summarized as follows:

Step 1. For every grid cell Ki, we identify a set of admissible reconstruction stencils ST =
{T(m) : m = 1, . . . 10}. See Fig. 2 for example. Consider to reconstruct v0(x, y) on cell
K0. The following T(m) are constructed. T(1) = {K0,K1,K10}; T(2) = {K0,K20,K2};
T(3) = {K0,K2,K21}; T(4) = {K0,K3,K30}; T(5) = {K0,K3,K31}; T(6) = {K0,K1,K11};
T

(7) = {K0,K10,K20}; T
(8) = {K0,K21,K30}; T

(9) = {K0,K11,K31}; and T
(10) =

{K0,K1,K2,K3}. Other choices of stencils are also acceptable. See discussions in
[36, 37, 38] for criterion for choosing these stencils. ST is used in the paper for easy
implementation. Also note that when K0 is on the boundary of the domain, some of
T(m) may not exist.

Step 2. For each stencil T(m) m = 1, . . . , 9, we use cell averages defined on cells contained in the
stencil to reconstruct preliminarily a P 1(x, y) function v

(m)
i (x, y). This is implemented

by solving the following system of linear equations for coefficients a0,i, a1,i and a2,i of

v
(m)
i (x, y):

∫

K(m),s

v
(m)
i (x, y)dxdy = |K(m),s|v(m),s , s = 1, 2, 3 .

Here K(m),s stands for a cell in T(m) and v(m),s is its given cell average.

For stencil T(10), v
(10)
i (x, y) is constructed by constrained least-squares fitting so that

∫

Ki

v
(10)
i (x, y)dxdy = |Ki|vi .
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Step 3. For each preliminarily reconstructed v
(m)
i (x, y), a smoothness indicator ωm is computed

with
∑10

m=1 ωm = 1 using the method introduced in [40]. The nonlinearly stabilized

reconstruction vi(x, y) is defined by a weighted combination
∑10

m=1 ωmv
(m)
i .

The following correction is used to make (B
(i)
Th,loc,x

(x, t), B
(i)
Th,loc,y

(x, t))t locally divergence-

free, namely ∇ · (B(i)
Th,loc,x

(x, t), B
(i)
Th,loc,y

(x, t))t = 0. Let

B
(i)
Th,loc,x

(x, t) = ax0,i + ax1,i
x− xi
|Ki|

+ ax2,i
y − yi
|Ki|

and

B
(i)
Th,loc,y

(x, t) = ay0,i + ay1,i
x− xi
|Ki|

+ ay2,i
y − yi
|Ki|

before the correction.
Denote a = min(|ax1,i|, |ay2,i|). If a = |ax1,i|, then B(i)

Th,loc,x
(x, t) and B

(i)
Th,loc,y

(x, t) are modi-
fied to be

B
(i)
Th,loc,x

(x, t) = ax0,i + ax1,i
x− xi
|Ki|

+ ax2,i
y − yi
|Ki|

,

B
(i)
Th,loc,y

(x, t) = ay0,i + ay1,i
x− xi
|Ki|

− ax1,i
y − yi
|Ki|

;

otherwise, B
(i)
Th,loc,x

(x, t) and B
(i)
Th,loc,y

(x, t) are modified to be

B
(i)
Th,loc,x

(x, t) = ax0,i − ay2,i
x− xi
|Ki|

+ ax2,i
y − yi
|Ki|

,

B
(i)
Th,loc,y

(x, t) = ay0,i + ay1,i
x− xi
|Ki|

+ ay2,i
y − yi
|Ki|

.

This reconstruction is now complete.

0K

2K
K1

3K

20K

31K
30K

K10

K11
21K

Figure 2: Cells used for reconstructing the second-order accurate polynomial approximations
for cell centered variables on cell K0.

We then proceed to solve the Reconstruction problem 2.
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4.1.2 Reconstructing b
()
Wh

(tn+1) on grid edges of Wh

Consider an edge eW of grid Wh which crosses two triangle cells Ki and Ki′ of Th. See Fig. 1
for example. The grid edge connecting points V 1 and V 2 crosses cells K1 and K2. Let the
unit edge normal of eW be νW

 and the parametric form of eW be given by Eq. (3.22).
The normal component of BTh,loc(x, t

n+1) (in νW
 direction) on part of the edge eW which

is on cell Ki is

bi(ζ̂, t
n+1) = νW

 ·B(i)
Th,loc

(

x(ζ̂), y(ζ̂), t
n+1
)

. (4.5)

bi(ζ̂, t
n+1) is a linear polynomial with respect to parameter ζ̂. Here e

W
 is parameterized by

x(ζ̂).
Similarly the normal component of BTh,loc(x, t

n+1) on part of the edge eW which is on

cell Ki′ along x(ζ̂) is

bi′(ζ̂, t
n+1) = νW

 ·B(i′)
Th,loc

(

x(ζ̂), y(ζ̂), t
n+1
)

. (4.6)

For convenience in discussion let’s rewrite bi(ζ̂) and bi′(ζ̂) in the following forms:

bi(ζ̂) = ai + biζ̂ ,

bi′(ζ̂) = ai′ + bi′ ζ̂ , − 1 ≤ ζ̂ ≤ 1 .
(4.7)

Finally, the reconstructed b
()
Wh

(tn+1) supported on eW is defined as

b
()
Wh

(ζ̂, t
n+1) = b

()

Wh
(tn+1) + b̂ζ̂ , − 1 ≤ ζ̂ ≤ 1 , (4.8)

where b̂ is obtained by a weighted combination of bi and bi′ as follows:

α1 =
1.0

ǫ+ (bi)2
, α2 =

1.0

ǫ+ (bi′)2
,

ω1 =
α1

α1 + α2

, ω2 =
α2

α1 + α2

,

b̂ = ω1bi + ω2bi′ ,

and ǫ = 10−8 in this paper.

5 Limiting Technique

For the central DG scheme, since shock waves or contact discontinuities are all local phe-
nomena, we apply a detector introduced in [41] to identify cells, denoted as ”trouble cells”
on Th which may contain oscillatory solutions. The reconstruction algorithm described in
Sec. 4.1.1 is first applied to solutions UTh(x, t

n+1) and BTh,loc(x, t
n+1) supported on these

“trouble cells” of Th. For other cells of Th, there is no need to do reconstruction. For the cen-
tral finite volume scheme, the reconstruction is applied to all cells of Th to get UTh(x, t

n+1)
and BTh,loc(x, t

n+1). Then the reconstruction algorithm described in Sec. 4.1.2 is used to
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reconstruct b
()
Wh

(tn+1) on edges which are on ”trouble cells” or intersect “trouble cells”. For
other edges of Wh, there is no need to do reconstruction for the central DG scheme; and we
can take uniform weights α1, α2 = 1 in the reconstruction described in Sec. 4.1.2 for the cen-
tral finite volume scheme. Finally, the algorithm described in Sec. 3.4 is used to reconstruct
the exactly divergence-free Bn+1

Wh
on dual cells. And the algorithm described in Sec. 3.5 is

used to reconstruct the exactly divergence-free Bn+1
Th

on Th subsequently.

6 Numerical Test Problems

In this section, numerical examples with smooth or discontinuous solutions are presented to
demonstrate the performance of the schemes introduced in this paper. The time step size
△tn is dynamically determined by

△tn =
hCCFL

max(|u|+ c)
,

where h is triangle edge length, CCFL is the CFL number and c is the speed of the fast
magneto-acoustic wave [6]. With second-order TVD Runge-Kutta time discretization, CCFL =
0.1 is used for all simulations. θ = △tn/∆τn = 0.5 is used in the fully discrete central DG
or FV schemes for computing the magnetic field.

6.1 Vortex evolution problem

We consider a vortex evolution problem to test the order of accuracy of the schemes. The
vortex problem was initially suggest in [35] and was adapted to the MHD equations in [24].
The problem is defined on a [−5, 5] × [−5, 5] domain with flow through boundary condi-
tions used on both sides. The unperturbed MHD flow is given by (ρ, pgas, ux, uy, Bx, By) =
(1, 1, 1, 1, 0, 0). The ratio of specific heats is γ = 5/3. The vortex is introduced through
perturbed velocity and magnetic fields given by

(δux, δuy) =
κ

2π
e0.5(1−r2)(−y, x) ,

(δBx, δBy) =
µ

2π
e0.5(1−r2)(−y, x) ,

where r2 = x2 + y2. The pressure determined by the dynamical balance is given by

δpgas =
κ2(1− r2)− µ2

8π2
e1−r2 .

We use κ = 1, µ = 1 in our computation. The exact solution is the initial configuration
propagating with speed (1, 1), and is given by

U(x, y, t) = U0(x− t, y − t) ,

where U0 = (ρ, pgas+ δpgas, ux+ δux, uy + δuy, Bx+ δBx, By + δBy). The Dirichlet boundary
condition with solution on the boundary given by U(x, y, t) is used. The typical triangle
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edge length, denoted by h, is listed in the first column of all the tables shown in this section.
Table 1 shows the L1 and L∞ errors and orders of accuracy using values of variables ρ and
ε at time T = 1.0 computed by the second-order central DG scheme. Table 2 shows the L1

and L∞ errors and orders of accuracy of Bx on grids Th and Wh respectively. L1 and L∞

errors and orders of accuracy using values of variables ρ and ε at time T = 1.0 computed by
the second-order central FV scheme is displayed in Table 3, and the L1 and L∞ errors and
orders of accuracy of Bx computed by the central FV scheme on grids Th and Wh respectively
is shown in Table 4. These tables show clearly that both DG and FV schemes achieved the
expected accuracy property. The absolute value of the undivided divergence of the magnetic
field is about O(10−13) in these calculations. The undivided divergence is defined by sum of
the divergence inside the element and the normal jump cross cell edges.

Table 1: Numerical errors and convergence order based on ρ and ε for the second-order
accurate central DG scheme for solving the 2D vortex evolution problem.

h L1 order L∞ order L1 order L∞ order
ρ error ρ error ε error ε error

1
8

9.99E-4 - 4.43E-4 - 4.48E-3 - 1.96E-3 -
1
16

2.47E-4 2.02 1.09E-4 2.02 1.18E-3 1.92 5.06E-4 1.95
1
32

6.30E-5 1.97 2.89E-5 1.92 3.05E-4 1.95 1.70E-4 1.57
1
64

1.63E-5 1.95 7.94E-6 1.86 8.30E-5 1.88 4.39E-5 1.95
1

128
4.24E-6 1.94 2.39E-6 1.73 2.14E-5 1.96 1.09E-5 2.01

Table 2: Numerical errors and convergence order based on Bx for the second-order accurate
central DG scheme for solving the 2D vortex evolution problem.

h L1 order L∞ order L1 order L∞ order
Bx error on Th Bx error on Th Bx error on Wh Bx error on Wh

1
8 5.58E-3 - 1.78E-3 - 4.89E-3 - 1.42E-3 -
1
16 1.31E-3 2.09 4.56E-4 1.96 1.15E-3 2.09 3.69E-4 1.94
1
32 3.28E-4 2.00 1.41E-4 1.69 2.97E-4 1.95 1.22E-4 1.60
1
64 8.27E-5 1.99 3.59E-5 1.97 7.48E-5 1.99 3.11E-5 1.97
1

128 2.08E-5 1.99 1.17E-5 1.62 1.92E-5 1.96 9.38-6 1.73

6.2 The field loop advection

We consider the megnetic field loop advection problem proposed in [22]. The following initial
condition same as in [10, 14] is used. (ρ, pgas, ux, uy, uz, Bz) = (1, 1, 2, 1, 1, 0). (Bx, By) =

21



Table 3: Numerical errors and convergence order based on ρ and ε for the second-order
accurate central FV scheme for solving the 2D vortex evolution problem.

h L1 order L∞ order L1 order L∞ order
ρ error ρ error ε error ε error

1
8

6.85E-3 - 3.18E-3 - 2.07E-2 - 8.36E-3 -
1
16

9.83E-4 2.80 7.27E-4 2.13 3.30E-3 2.65 1.87E-3 2.16
1
32

1.16E-4 3.08 8.90E-5 3.03 5.52E-4 2.58 2.91E-4 2.68
1
64

1.74E-5 2.74 7.31E-6 3.61 1.29E-4 2.10 8.86E-5 1.72
1

128
3.83E-6 2.18 1.32E-6 2.47 3.38E-5 1.93 3.62E-5 1.29

Table 4: Numerical errors and convergence order based on Bx for the second-order accurate
central FV scheme for solving the 2D vortex evolution problem.

h L1 order L∞ order L1 order L∞ order
Bx error on Th Bx error on Th Bx error on Wh Bx error on Wh

1
8 3.72E-2 - 1.16E-2 - 3.42E-2 - 1.15E-2 -
1
16 6.13E-3 2.60 2.97E-3 1.97 5.50E-3 2.64 2.95E-3 1.96
1
32 9.03E-4 2.76 4.85E-4 2.61 8.51E-4 2.69 4.77E-4 2.63
1
64 1.54E-4 2.55 1.13E-4 2.10 1.47E-4 2.53 1.12E-4 2.09
1

128 3.37E-5 2.19 3.93E-5 1.52 3.18E-5 2.21 3.92-5 1.51

22



(∂Az

∂y
, −∂Az

∂x
), where Az is the z-component of the magnetic potential

Az =

{

A0(R− r) if r ≤ R
0 if r > R

with A0 = 10−3, R = 0.3 and r =
√

x2 + y2. γ = 5/3.
The computational domain is [−1, 1] × [−0.5, 0.5]. Quasi-uniform triangular mesh is

used for this calculation for the ease of applying periodic boundary condition on all sides.
The typical edge length of triangles is roughly equal to 1

180
. Solution of the problem is

computed to time T = 10. Figures 3 and 4 show the z-component of the magnetic potential
Az computed by the central DG and FV schemes over time, respectively. Due to exact
divergence-free nature of the numerical magnetic field, symmetry of the numerical Az is well
preserved during the whole time of computation. Numerical dissipation is observed around
the center and the boundary of the loop and no oscillation is observed in simulation results.
For calculation using the central DG scheme, no limiter is applied. [10] used ”whether the z-
component of the magnetic field Bz stays around machine zero” as a criterion to demonstrate
the importance of the magnetic field being divergence-free in the simulation. Both of our
schemes produced the approximated Bz with the magnitude of 10−5 while using the exactly
divergence-free magnetic field. This is caused by the O(10−6) deviation of the numerical uz
from its exact value 1.

6.3 Rotor problem

This test problem is the second rotor problem described in [28]. The computational domain
is [0, 1]× [0, 1]. γ = 5/3. A dense rotating disk of fluid is initially placed at the central area of
the computational domain, while the ambient fluid is at rest. The initial condition is given
by

(ρ, pgas, ux, uy, uz, Bx, By, Bz) = (ρ(x, 0), 0.5, ux(x, 0), uy(x, 0), 0,
2.5√
4π
, 0, 0, 0).

Here

(ρ(x, 0), ux(x, 0), uy(x, 0)) =







10, −(y − 0.5)/r0, (x− 0.5)/r0 if r < r0
1 + 9f, −(y − 0.5)f/r, (x− 0.5)f/r if r0 < r < r1
1, 0, 0, if r > r1

where r0 = 0.1, r1 = 0.115, f = (r1 − r)/(r1 − r0), and r =
√

(x− 0.5)2 + (y − 0.5)2.
The solution at time t = 0.295 is computed. Figures 5 and 6 plot the numerical results of

the density ρ, pressure pgas, magnetic pressure (B2
x +B2

y)/2 and Mach number computed by
central DG and FV schemes, respectively. We see that there is virtually no diffusion of the
loops boundaries and no oscillations in the magnetic pressure within the loops interior. The
zoom-in view of the Mach number of the central FV solution is smoother than that of the
central DG solution. See Figures 5(e) and 6(e). This is due to the fact that limiting is only
applied to DG solution supported on “trouble cells”. The pressure is positive throughout
the computational domain. The degradation in the density variable that was previously
reported in [19] is not seen in our simulation.
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Figure 3: Central DG solution of the z-component of the magnetic potential Az of the field
loop problem. (a): t = 0.0; (b): t = 2.0; and (c): t = 10.0. 10 equally spaced contours are
used.

6.4 Orszag-Tang problem

Here we simulate the Orszag-Tang vortex problem [47]. The initial conditions are ux =
− sin(y), uy = sin(x), Bx = − sin(y), By = sin(2x), ρ = γ2, pgas = γ, uz = Bz = 0.
The computational domain is a square [0, 2π] × [0, 2π] with periodic boundary conditions
along both boundaries. γ = 5/3. The final output time t = π. The typical edge length of
triangles used to partition the domain is about 1

256
. Starting from a smooth initial condition,

the flow becomes very complex as expected from a transition towards turbulence gradually.
Figures 7 and 8 show the development of density ρ solution of the Orszag-Tang vortex
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Figure 4: Central FV solution of the z-component of the magnetic potential Az of the field
loop problem. (a): t = 0.0; (b): t = 2.0; and (c): t = 10.0. 10 equally spaced contours are
used.

problem computed by the central DG and FV schemes, respectively. The central DG and
FV solutions are comparable. Also we report that the density and pressure have remained
positive till at least time t = 3π. No positivity fix was needed for this problem.

7 Concluding Remarks

In this paper we introduced new central and central DG schemes for solving the ideal MHD
equations on two-dimensional triangular grids. These schemes utilized ideas of the CT
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Figure 5: central DG solution of the rotor problem at time t = 0.295. Thirty equally spaced
contours are shown in each plot. (a) Density ρ; (b) Pressure pgas; (c) Magnetic pressure
(B2

x +B2
y)/2; (d) Mach number; (e) Zoom-in view of Mach number around central region.

framework and central schemes and central DG schemes on overlapping cells, and achieve
exactly divergence-free magnetic field. Numerical tests show that the proposed schemes have
achieved the desired order of accuracy and computed MHD shock wave problems successfully.

While this paper only implements the second-order accurate schemes, the proposed
schemes in principle can be generalized to three dimensions and to general meshes with
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Figure 6: central FV solution of the rotor problem at time t = 0.295. Thirty equally spaced
contours are shown in each plot. (a) Density ρ; (b) Pressure pgas; (c) Magnetic pressure
(B2

x +B2
y)/2; (d) Mach number; (e) Zoom-in view of Mach number around central region.

arbitrary order of accuracy. We will report in a subsequent paper implementation of these
schemes with higher-order accuracy.
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Figure 7: Central DG solution of the Orszag-Tang problem. Evolution of ρ over time is
plotted by using 15 equally spaced contours. Top left: t = 0.5; top right: t = 1.0; bottom
left: t = 2.0; bottom right: t = 3.14.
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