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Abstract. Semi-Lagrangian schemes have been explored by several authors recently for trans-
port problems in particular for moving interfaces using the level set method. We incorporate the
backward error compensation method developed in [3] into semi-Lagrangian schemes with almost
the same simplicity and three times the complexity of a first order semi-Lagrangian scheme but with
improved order of accuracy. Stability and accuracy results are proved for a constant coefficient linear
hyperbolic equation. We apply this technique to the level set method for interface computation.

1. Introduction. Semi-Lagrangian schemes, e.g., the Courant-Isaacson-Rees
(CIR) scheme [2], have no CFL restriction for the time step size, and therefore lo-
cal space refinement becomes more convenient. Recently several researchers have
used and studied semi-Lagrangian schemes for transport equations, in particular
for computing level sets (Osher and Sethian [19]) describing interface movement.
Strain [25, 26, 27] has developed several fast semi-Lagrangian schemes for evolving
level sets which incorporate techniques including essentially non-oscillatory (ENO
[10, 23, 24]) spatial interpolation, predictor-corrector temporal approximation, veloc-
ity smoothing and quad-tree meshes. Enright et. al. [5] apply the CIR scheme to
the hybrid particle level set method [4] to simplify the method with almost no loss of
resolution.

For a hyperbolic equation ut +v ·ux = 0, the CIR scheme computes the numerical
solution defined on a mesh {xi} as U(xi, tn+1) = U(x̂i, tn), where x̂i = Γi(tn) and Γi(t)
is the approximate characteristic curve passing (xi, tn+1). Various approximations of
x̂i and U(x̂i, tn) (since U is only defined at grid points (xi, tn)) can be used. For
example, one may choose x̂i = xi − v(xi, tn)(tn+1 − tn) and compute U(x̂i, tn) by
linearly interpolating the U values at two nearest grid points xj and xj+1 such that
x̂i ∈ [xj , xj+1], and obtain the first order CIR scheme which does not increase the L∞

norm of the numerical solution with increasing time. If tn+1 − tn is small enough so
that x̂i ∈ [xi−1, xi+1] (the CFL condition), then the CIR scheme is actually the first
order upwind scheme. Furthermore, if the linear interpolation of U(x̂i, tn) is from
the U values at grid nodes xi−1 and xi+1, then it becomes the Lax-Friedrich scheme.
Therefore the CIR scheme removes the CFL condition by interpolating U(x̂i, tn) from
the U values near the root of the characteristics x̂i, instead of from the U values
near xi. In order to achieve higher order of accuracy, higher degree (2nd degree or
higher) polynomial interpolation can be applied and corresponding order of temporal
numerical integration is also necessary for computing the characteristics. Falcone and
Ferretti [6] have analyzed the stability and convergence of a general class of semi-
Lagrangian schemes.

In higher space dimensions, the first order CIR scheme is quite simple since it only
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uses a local linear interpolation. Is there a convenient way to manipulate the first or-
der CIR scheme to achieve higher order of accuracy simultaneously in both space and
time without using higher order polynomial interpolation? The MacCormack scheme
[17] uses an upwind scheme followed by a downwind scheme to obtain improved order
of accuracy in both space and time for hyperbolic equations. For semi-Lagrangian
schemes, the integration is along the approximate characteristics and the upwind dis-
cretization is not clearly defined at the root of the characteristics. We are interested
in whether the backward error compensation algorithm introduced in [3] can be suc-
cessfully applied to the CIR scheme. This algorithm is based on a simple observation
that if one solves a hyperbolic system forward in time for one time step with a scheme
(e.g., a first order scheme) and then backward in time for one time step with the
same scheme, one obtains another copy of the solution at the initial time. The two
copies of the solution should have been equal if there were no numerical errors (at
least, away from singularities). Therefore comparing the two copies of the solution
gives us information about the errors which we can use to improve the accuracy. In
Shu and Osher [23], some TVD Runge-Kutta methods also incorporate downwind
spatial discretizations in order to achieve the TVD property, which are implemented
by discretizing the time reversed hyperbolic equation in certain middle time steps.

Two difficulties involved in the numerical computation of the level set method
are (1) how to reduce diffusion; and (2) how to minimize artifacts near the singular
points of the interface. Typically high order ENO or WENO ([16, 11]) schemes are
used for solving the level set equation and re-distancing. Sussman and Puckett [28]
have combined the level set and volume-of-fluid method so that one has the interface
represented by a smooth level set function for extracting information such as mean
curvature etc, and also has the local volume conservation from the volume-of-fluid
method. Enright et. al. [4] have developed the hybrid particle level set method which
takes advantage of the high resolution of Lagrangian schemes near interface singulari-
ties, and also has the convenience of the level set method which automatically resolves
topological changes of the interface. Strain [25, 26, 27] addresses these difficulties by
using semi-Lagrangian schemes to compute the level set equation so that local space
refinement can be done near singular points of the interface without locally reducing
the time step size. Here we incorporate the backward error compensation algorithm
[3] with the CIR scheme and obtain an efficient and simple algorithm for the level set
method. We will introduce this algorithm in Section 2, and discuss its stability and
accuracy in Sections 3 and 4. In Section 5, we discuss its application to the level set
method. We would like to refer to Kim et. al. [12] for fluid simulations incorporating
the backward error compensation algorithm with other methods.

2. Backward Error Compensation for Semi-Lagrangian Schemes. The
level set method proposed by Osher and Sethian [19] uses a continuous function
φ(x, t) ∈ R to represent evolving interfaces as the zero level set {(x, t) : φ(x, t) = 0},
where x ∈ Rd is the spatial variable and t ∈ R represents the time. For a given
velocity field v(x, t) ∈ Rd, the level set function φ satisfies

∂φ

∂t
+ v · 5φ = 0. (2.1)

We define a straight-forward scheme based on the first-order CIR scheme with
backward error compensation. For simplicity we use a uniform mesh and describe the
scheme in all of Rd. We assume a uniform rectangular grid in Rd with the spatial
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Fig. 2.1. Backward error compensation algorithm.

mesh size

∆x = (∆x1,∆x2, · · · ,∆xd)

and let the time step size be ∆tn = tn+1−tn. Given the approximate level set function
Φ(·, tn) at grid points

{xi = (i1∆x1, i2∆x2, · · · , id∆xd) : i = (i1, i2, · · · , id) ∈ Zd},

the first order CIR scheme can be formulated as follows,

Φ(xi, tn+1) = Φ(x̂i, tn), (2.2)

where x̂i = xi − v(xi, tn)∆tn. In one space dimension (d = 1), Φ(x̂i, tn) is computed
from the linear interpolation of Φ(xj , tn) and Φ(xj+1, tn) where x̂i ∈ [xj , xj+1]. In
two space dimensions Φ(x̂i, tn) can be approximated by the bilinear interpolation of
the Φ(·, tn) values at the vertices (grid points) of a grid cell containing x̂i. For general
space dimensions one can use the tensor product of one dimensional linear polynomials
to interpolate. Denote Φn

i = Φ(xi, tn).
The backward error compensation algorithm [3] can be applied to the CIR scheme

as follows (see Fig. 2.1).
Step 1. Solve equation (2.1) forward in time to obtain Φ̃n+1 by the CIR scheme (2.2),

with Φn being the initial value at the time tn.
Step 2. Solve equation (2.1) backward in time to obtain Φ̆n by the same method.

This is equivalent to solving the time reversed equation ∂φ
∂t

− v · 5φ = 0

forward in time by (2.2), with Φ̃n+1 being the initial value.
Step 3. Let Φn

i = Φn
i + 1

2 (Φn
i − Φ̆n

i ) for all i.
Step 4. Solve equation (2.1) forward in time to obtain Φn+1 by (2.2), with Φn being

the initial value at the time tn.
The term 1

2 (Φn
i − Φ̆n

i ) is called the backward compensation term. It should be
noticed that the velocity field v is only evaluated at grid points at times tn and tn+1 in
the above algorithm and the CIR scheme (2.2) involves only local linear interpolation
of Φ(x̂i, ·). Therefore the implementation of the above algorithm is quite simple even
for three space dimensions.

The dual of the above algorithm, called the forward error correction algorithm,
can be applied to the CIR scheme as follows:
Step 1. Solve equation (2.1) forward in time to obtain Φ̃n+1 by the CIR scheme (2.2),

with Φn being the initial value at the time tn.
Step 2. Solve equation (2.1) backward in time to obtain Φ̆n by the same method.

This is equivalent to solving the time reversed equation ∂φ
∂t

− v · 5φ = 0

forward in time by (2.2), with Φ̃n+1 being the initial value.
Step 3. Solve equation (2.1) forward in time to obtain Φn+1 by (2.2), with Φ̆n being

the initial value at the time tn.
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Step 4. Let Φn+1
i = Φ̃n+1

i + 1
2 (Φ̃n+1

i − Φn+1
i ) for all i.

If the velocity field v depends only on x and t, the above two algorithms are
equivalent in the sense they will result in the same Φn+1. If the velocity field v

depends on φ, i.e., v = v(φ(x, t),x, t), in the backward error compensation algorithm
we may use the same velocity field in Step 4 as in Step 1. Therefore the velocity
field only needs to be computed twice at Step 1 and Step 2. In the forward error
correction algorithm, we may use the same velocity field in Step 3 as in Step 1 so
that the velocity field only needs to be computed twice. When using this velocity
approximation, we can easily see that the above two algorithms applied to the CIR
scheme are equivalent.

3. Stability. In [3], we have proved the l2 stability of the backward error com-
pensation algorithm applied to the first order upwind scheme for the 1D equation
ut + ux = 0. Here we prove some more general results in higher space dimensions.
Throughout this and the next section, we consider equation (2.1) in the domain [0, 1]d

with periodic boundary conditions, and assume v is a constant vector in equation (2.1)
unless specified otherwise. We use i, j, k, l, s ∈ Z for indices and i, j,k, l, s ∈ Zd for
multi-indices. In particular, we use k to represent the dual index of the Fourier
series. The symbol i will also represent

√
−1 when the meaning is clear from con-

text. Let ∆xj = 1/Nj , j = 1, 2, · · · , d, for some positive integers Nj . With N =
(N1, N2, . . . , Nd) set DN = Zd ∩Πj [0, Nj − 1]. The Un

i is defined outside DN by peri-
odic extension. Similarly, take FN = Zd∩Πj [1−Nj, Nj −1]. Let L : Un+1 = L(Un)
be a linear scheme for equation (2.1) such that Un+1

i =
∑

j∈DN
αjU

n
i+j, where αj’s

depend on ∆tn/∆xl, l = 1, · · · , d. The Un
j can be expressed uniquely as the finite

Fourier series

Un
j =

∑

k∈FN

Cn
ke

2πik·xj ,

where k = (k1, k2, . . . , kd). Substituting this finite Fourier series into scheme L we
obtain Cn+1

k = ρLC
n
k , where ρL(k) =

∑

j∈DN
αje

2πik·xj is the Fourier symbol of
L, and max{|ρL(k)| : k ∈ FN} is called the amplification factor of scheme L. Let
L∗ : Wn = L∗(Wn+1) be the corresponding linear scheme that solves equation (2.1)
backward in time using scheme L. (Note that L∗ is not defined to be the adjoint of
L with respect to any inner product, although it may be in some cases.) Applying
the backward error compensation algorithm to scheme L we obtain a linear scheme
for equation (2.1),

F : V n+1 = F (V n) = L(I +
1

2
(I − L∗L))(V n), (3.1)

where I is the identity operator. Let ρL∗ and ρF be the Fourier symbols of schemes
L∗ and F respectively, and we have the following theorem.

Theorem 1. Suppose ρL∗(k) = ρL(k) for all k ∈ FN. Then |ρF (k)| ≤ 1 for all
k ∈ FN if and only if |ρL(k)| ≤ 2 for all k ∈ FN.

Proof. The Fourier symbol of (3.1) can be obtained as follows

ρF = ρL(1 +
1

2
(1 − ρLρL))

Let η = |ρL|, G(η) = |ρF |, then the theorem is proved by inspecting the function
G(η) = η| 32 − 1

2η
2| for η ∈ [0,∞).
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Theorem 1 not only insures that the backward error compensation algorithm
applied to a stable (in l2) scheme is stable, but also implies that some unstable schemes
can be turned into stable ones. Throughout this paper, we say a scheme is stable if
it is stable in the l2 sense, unless specified otherwise. It is easy to verify that the
condition in Theorem 1 is satisfied when applying the backward error compensation
algorithm to the following classical schemes.

Example 1. In one space dimension (d = 1), the first order upwind scheme for
equation (2.1) has an amplification factor |ρ| ≤ 2 if the CFL factor |v|∆t/∆x is no
more than 1.5 (the scheme is unstable for the CFL factor greater than 1). Therefore
applying the backward error compensation algorithm to it creates a scheme stable with
CFL factor less than or equal to 1.5, and the new scheme is second order accurate [3].

Example 2. Using center spatial difference and forward Euler time difference
for equation (2.1) will create an unstable scheme. When d = 1, the scheme has an
amplification factor |ρ| ≤ 2 if the CFL factor is no more than

√
3. Therefore applying

the backward error compensation algorithm to it creates a second order scheme (see
Sec. 4) stable with the CFL factor less than or equal to

√
3.

Example 3. In one space dimension, the Lax-Friedrich scheme has an amplification
factor no more than 2 if the CFL factor is less than or equal to 2 (it is stable only
if the CFL factor is less than or equal to 1). Therefore applying the backward error
compensation algorithm to it creates a second order scheme (see Sec. 4) stable with
the CFL factor less than or equal to 2.

Remark. It is well known that for the linear Schrodinger equation

iψt = −a4 ψ,

the simplest explicit scheme with forward Euler time discretization and center spatial
discretization is unstable. In 1D, the amplification factor for such a scheme is

|ρ(k)|2 = 1 + (4λ)2 sin4(πk∆x), where λ = |a| ∆t

∆x2
.

Therefore |ρ| ≤ 2 if λ ≤ 1
4 . By applying equivalent results of Theorem 1 and The-

orem 4 (in the next section), we could also show that applying the backward error
compensation algorithm to it creates a new second order scheme stable for λ ≤ 1

4 .
Next we verify that for constant coefficients with periodic boundary conditions

that the CIR scheme for equation (2.1), satisfies the the condition of Theorem 1.
Given Φn, the Φn+1 computed by the CIR scheme can be written as

Φn+1
j = (LΦn)j =

∑

l

Φn
l Ψl(xj − v∆tn) (3.2)

where Ψl is the Lagrange basis function which in each cell is a linear (d = 1) polyno-
mial or a bilinear (d = 2) polynomial etc, satisfying Ψl ≥ 0 and Ψl(xj) = δlj (= 1 if
l = j; 0 otherwise). The function Ψl has the property that

Ψl(x) = Πd
j=1ψ∆xj ,lj (xj),

where ψh,j is the basis function associated with the mesh point jh in one dimensional
piecewise linear interpolation using the mesh of integer multiples of h.

It then follows that

Φn+1
j = (L1 ⊗ · · · ⊗ LdΦ

n)j, (3.3)
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where the operators Lj are the one-dimensional versions or L using vj and ∆xj . From
this it follows that

ρCIR(k) = Πd
j=1ρLj

(kj). (3.4)

Hence,

ρCIR = ρCIR∗ , (3.5)

if the result holds in one space dimension. The one-dimensional result is easily checked.
We are now in a position to obtain

Corollary 2. The CIR scheme with backward error compensation algorithm for
equation (2.1) with constant coefficients has an amplification factor less than or equal
to 1 for any mesh size ∆x and time step size ∆tn.

Proof. It is well known (see e.g. [6]) that the CIR scheme has an amplification
factor less than or equal to 1. It follows then that it has amplification factor less or
equal to one in d-space by (3.4). From (3.5) and Theorem 1 the proof is complete.

4. Accuracy. We study the accuracy improvement of the backward error com-
pensation algorithm for a general linear scheme for equation (2.1) with constant coef-
ficients and periodic initial data (see the previous section). The result generalizes the
accuracy improvement theorem in [3] for a linear ordinary differential equation and
is based on the comparison of the Fourier symbols of the differential equation (2.1)
and its corresponding numerical scheme, see Lax [14]. Let L,L∗, F be linear schemes
defined as in Section 3 and ρL, ρL∗ , ρF be their corresponding Fourier symbols respec-
tively. Expand φ into Fourier series

φ(x, t) =
∑

k∈Zd

ck(t)e2πik·x,

and plug in equation (2.1), we obtain

dck
dt

= P (ik)ck,

where P is a linear homogeneous polynomial with real coefficients. Therefore we can
write

ck(tn + ∆t) = e∆tP (ik)ck(tn).

Assume ∆x1 = · · · = ∆xd = h and ∆t/h is fixed during the mesh refinement. A
scheme L1 : Φn+1 = L1(Φ

n) is said to be accurate of order r if for any solution φ of
equation (2.1) having continuous derivatives up to order r + 1,

φ(xj, tn+1) − L1(φ(·, tn))|xj
= O(hr+1).

We first state the theorem of Lax [14].
Theorem 3. Scheme L is accurate of order r if and only if

ρL(k) = e∆tP (ik) +O(|kh|r+1), as h→ 0.

The “only if” part of the theorem is proved by Lax [14] for more general linear
hyperbolic equations with variable coefficients. With constant coefficients, Lax’s proof
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also implies the “if” part of this theorem. Using the Lax’s Theorem 3, we can prove
the following theorem.

Theorem 4. Suppose ρL∗(k) = ρL(k) for any k ∈ Zd and scheme L is accurate
of order r for equation (2.1) with constant coefficients, where r is an odd positive
integer, then scheme F is accurate of order r + 1.

Proof. The accuracy of scheme L implies that

ρL(k) = e∆tP (ik) +Qr+1(ikh) +O(|kh|r+2).

where Qr+1 is a homogeneous polynomial of order r+1 with real coefficients (recalling
that we assume the scheme coefficient αj depends on ∆t/h which is fixed). Since r+1
is even, we have

ρL∗(k) = ρL(k) = e−∆tP (ik) +Qr+1(ikh) +O(|kh|r+2).

Therefore

ρF (k) = ρL(k){1 + 1
2 [1 − ρL∗(k)ρL(k)]}

= ρL(k){1 − 1
2 [e−∆tP (ik) + e∆tP (ik)]Qr+1(ikh) +O(|kh|r+2)}

= [e∆tP (ik) +Qr+1(ikh) +O(|kh|r+2)][1 −Qr+1(ikh) +O(|kh|r+2)]
= e∆tP (ik) +O(|kh|r+2).

(4.1)
The proof is complete.

Remark. When equation (2.1) has variable coefficients the Fourier-Stieltjes trans-
form (see e.g.[14]) is used to replace the Fourier symbols and a formula similar to
(4.1) can be derived for the Fourier-Stieltjes transform of scheme F .

An interesting phenomenon is that the backward error compensation algorithm
seems to improve the numerical result even for very irregular mesh. In the follow-
ing example we use a first order upwind scheme with and without backward error
compensation to compute the linear advection of a pyramid function: ut + ux = 0,
x ∈ [0, 1] with periodic boundary condition. The grid points are distributed as

xi = i ∗ 0.01 + 0.003 ∗ sin[(i− 0.2) ∗ (i+ 6.1789) ∗ i], i = 0, 1, · · · , 99.

The solutions at the final time T = 10 are shown in Fig. 4.1. The result for triangular
mesh is shown in Sec. 5.

5. Application to the Level Set Method. Besides equation (2.1), since the
velocity field could create large gradient in Φ, there is usually an auxiliary equation
to solve until reaching the steady state at each time step [30],

∂Φ

∂τ
+ sign(Φ)(| 5 Φ| − 1) = 0. (5.1)

This procedure is supposed to transform the Φ into a signed distance function without
changing its zero level set. This step also helps clean the error pollution coming
from the “skeleton”, i.e., the non-smooth area of the level set function. As in [30],
equation (5.1) can be written as

Φ̃τ +W · 5Φ̃ = S(Φ̃0), (5.2)

where W = S(Φ̃0) 5 Φ̃/| 5 Φ̃| and S(Φ̃0) is the sign function of Φ̃0, S(Φ̃0) = 1, if
Φ̃0 > 0; S(Φ̃0) = −1 if Φ̃0 < 0. Φ̃0 is the initial value for (5.2) and is the current level
set function obtained by solving equation (2.1). We only discuss the cases in 2D and
the indices i or (i, j) ∈ Z2 will be used throughout the rest of the paper.
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Fig. 4.1. Linear advection of a pyramid function over 100 irregular cells on domain [0, 1] with
the size of the largest cell 4 times that of the smallest cell. CFL = 0.5, T = 10. Computed by the
first order upwind scheme with and without backward error compensation (BF).

5.1. New Modifications to the Re-distancing Procedure. We first com-
pute equation (2.1) using the CIR scheme with backward error compensation to obtain
the approximate level set function Φn at the time tn. Then let Φ̃0 = Φn and solve
equation (5.2) for a few time steps (e.g. m1 steps). Then replace Φn by Φ̃m1 and
finish the re-distancing procedure at this time.

We use a slightly modified center difference to approximate W . For example,
∂Φ̃
∂x

(xi,j) is approximated by (Φ̃i+1,j − Φ̃i−1,j)/(2∆x) if Φ̃i+1,j − Φ̃i,j and Φ̃i,j − Φ̃i−1,j

are of the same sign; by maxmod{(Φ̃i+1,j − Φ̃i,j)/∆x, (Φ̃i,j − Φ̃i−1,j)/∆x} otherwise,
where

maxmod{a, b} =

{

a, if |a| > |b|
b, otherwise,

similarly for the approximation of ∂Φ̃
∂y

(xi,j). This modification gives a more accurate
normal direction of the interface in the unresolved region of the interface, e.g., near
the place where the interfaces are about to have topological changes.

At each time of solving equation (5.2), given Φ̃m at the time τm, we compute
equation (5.2) only at places, say xi,j , to obtain Φ̃m+1

i,j where either

(A) the absolute value of the difference between Φ̃m
i,j and one of its neighbors is

greater than their distance ∆x, i.e., at least one of the four statements is true,

|Φ̃m
i,j − Φ̃m

i±1,j | > 1.1∆x, |Φ̃m
i,j − Φ̃m

i,j±1| > 1.1∆x; or

(B)Φ̃m
i,j is of the same sign with Φ̃m

k,l for all integers k, l such that |k − i| ≤ 1 and
|l − j| ≤ 1.
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For other grid nodes, say xp,q , simply let Φ̃m+1
p,q = Φ̃m

p,q . This allows us to use a
simple low cost first order upwind scheme to discretize equation (5.2) without gen-
erating large diffusion or distortion, yet keeps an upper bound for the norm of the
gradient of Φ̃ at the equilibrium state.

Remarks. 1. Note that for an exact signed distance function φ, the absolute value of
the difference between two φ values at any two points is no more than the distance
between the two points. Condition (A) detects the violation of this property and
corrects it, which ensures (at equilibrium state) an upper bound for the Euclidean
norm of the discrete gradient of the re-distanced level set function (1.1 in 1D, 1.1

√
2

in 2D if the discrete gradient is approximated by one-sided or center difference). For
some problems, e.g. an expanding bubble with initial radius about ∆x, the level set
function Φn could become flatter and flatter near the interface without re-distancing.
Condition (B) addresses the problem.

This procedure is an improvement of the procedure proposed in [3], where con-
dition (A) is replaced by (A1) |Φ̃m

i | > ∆x. The problem with (A1) is that when
two interfaces are about to merge, the narrow region between them will not be re-
distanced and the unbalanced re-distancing on both sides of an interface could create
an artificial movement of the interface and delay the merging process. Condition (A)
has solved this problem as shown in the following numerical examples. In actual im-
plementation, we use the condition ((A2)|Φ̃m

i | > 1.1∆x or (A) or (B)) to determine
if the re-distancing is necessary at a grid point or not in order to reduce the compu-
tational cost of the “if” statement, and the computational results are essentially the
same as using the condition ((A) or (B)).

2. Russo and Smereka [22] seem to be the first to realize that not changing the values
of the level set function at grid nodes adjacent to the interface produces good results
in re-distancing. In [22], they propose that the upwind discretization of equation (5.2)
shouldn’t go across the interface. So the value of the level set function at a grid node
adjacent to the interface is recomputed instead by its value divided by the norm of
the approximated gradient of the level set function at the grid node. In one remark of
[22], the approximated gradient is chosen such that the values of the level set function
at the grid nodes adjacent to the interface are unchanged during the re-distancing.

We first conduct a convergence test with and without the re-distancing. We
compute the rotation of a circle around the point (50, 50) for one revolution in the
domain [0, 100] × [0, 100]. The circle is initially centered at (50, 75) with radius 15.
The velocity field is given as (u, v) = ( π

314 (50 − y), π
314 (x − 50)). Every point of this

circle is supposed to move along the local velocity field. One revolution occurs at the
time T = 628. The initial level set function Φ is set to be a signed distance function
which is negative inside the circle and positive outside. The maximum error between
the computed and exact level set functions at grid nodes near the interface is shown
in Table 5.1. Clearly we have the second order convergence for the CIR scheme with
backward error compensation without re-distancing. And the simple re-distancing
procedure causes the order of convergence to lie between 1 and 2. However, for
interfaces containing singular points, the re-distancing improves the resolution (with
only a fraction of the cost for computing equation (2.1)) as shown in the following
examples.

In the next example we replace the circle with a cutout circle. It is the so called
Zalesak’s Problem [33] which is one of the difficult test problems for the level set
method or volume of fluid method, because of their Eulerian representation of the
interface. (Lagrangian-type methods, e.g. [8, 20, 7, 32] etc., could perform better for
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∆x error without re-distancing order error with re-distancing order
2 0.623 - 0.454 -
1 0.110 2.50 0.154 1.56

0.5 0.0262 2.07 0.0536 1.52
0.25 0.00638 2.04 0.0208 1.37

Table 5.1

Rotation of a circle: the maximum error between the computed and exact level set functions
at grid nodes near the interface, computed by the CIR scheme with backward error compensation,
CFL = 3.

∆x average distance order
1 0.138 -

0.5 0.0497 1.47
0.25 0.0211 1.23

Table 5.2

Rotation of a slotted disk: average distance between the exact interface and the one computed
by the CIR scheme with backward error compensation and re-distancing, CFL=3.

this problem.) Initially the cutout circle is centered at (50, 75) with radius 15. The
slot being cut out has width 5 and length 25. The challenge for computation is that
this disk has corner points, curves, straight lines and a very narrow slot (when the
mesh size is 1 or 0.5, the slot width is 5 or 10 times the mesh cell size respectively).
In the first test we compute this problem with N = 100 (∆x = 1) and CFL factor
3. Equation (2.1) is computed by the CIR scheme with backward error compensation
and re-distancing. In all the following test examples, equation (5.2) is computed for
only two time steps with the CFL factor 0.25 after solving equation 2.1 for each time
step. In Fig. 5.1 the computed disk (dash line) is drawn against the exact one (solid
line) after one (left figure) and two revolutions (right figure). The results seem to
match the ones computed by the coupled level set and volume-of-fluid method [29].
In Fig. 5.2, the mesh is refined with N = 200 (∆x = 0.5). The average distances
(defined and computed as in [28]) between the exact and computed interfaces are
shown in Table 5.2 for three meshes: 100×100, 200×200 and 400×400. The relative
errors of the computed disk area A are plotted against time for the three meshes, see
Fig. 5.3.

The CIR scheme can be applied to irregular meshes. Applying the backward error
compensation to it is essentially calling it 3 times. Therefore once a first order code
is written down for an irregular mesh, the backward error compensation algorithm
can be applied without too much work. In Kim et. al. [13], the Zalesak’s disk is
initially put on the triangulated surface of a 3D sphere, see Fig. 5.4. The slot is
between 5 to 6 times the size of a triangular cell. There is a constant angular velocity
field rotating around the Z-axis. In Fig. 5.5, the level set method is computed by
the first order CIR scheme. In Fig. 5.6, the level set method is computed by the first
order CIR scheme with backward error compensation. In both cases, the re-distancing
procedure is also implemented by the first order CIR scheme. Improved results similar
to those on rectangular meshes can be observed in Fig. 5.6, which clearly demonstrate
the effectiveness of the backward error compensation algorithm on triangular meshes.
Simulations of smoke advection on adaptive quad-tree meshes with backward error
compensation algorithm have also been explored in [13] and are successful.
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5.2. Interfaces Moving with Non-Smooth Velocity. The velocity field di-
recting the interface movement usually contains singularities. For example, if the in-
terface is moving along its normal direction and the interface contains corner points,
the velocity field is not continuous at these corner points. Simply applying the back-
ward error compensation to compute the level set equation (2.1) may generate artifacts
where the velocity field is not smooth. We propose two simple techniques to address
the problem.

5.2.1. Local Turn-off of the Error Compensation. The simplest way to
overcome this problem is to set the backward compensation term (in the backward
error compensation algorithm) to be zero wherever the non smoothness in the velocity
field is detected. In the following examples we use the following detector. For a
velocity field V = (u, v) in 2D defined on a uniform mesh, if at the grid point (xi, yj)

||Vi+1,j − 2Vi,j + Vi−1,j || ≤ min(||Vi+1,j −Vi,j ||, ||Vi,j −Vi−1,j ||) and
||Vi,j+1 − 2Vi,j + Vi,j−1|| ≤ min(||Vi,j+1 −Vi,j ||, ||Vi,j −Vi,j−1||), (5.3)

we use the backward error compensation; otherwise we set the backward compensa-
tion term to zero. The advantage of this technique is its simplicity. Since the CIR
scheme has very small diffusion compared to other first order schemes, it is good at
maintaining the sharp corners of the interface without generating artifacts. How-
ever, this technique is sensitive to the choice of the non-smoothness detector. When
the non-smoothness of the velocity field stays for a long time, this technique usually
introduces too much diffusion into the solution.

Remark. A lower cost version of condition (5.3) can be formulated as

|ui+1,j − 2ui,j + ui−1,j | ≤ min(|ui+1,j − ui,j |, |ui,j − ui−1,j |) and
|vi,j+1 − 2vi,j + vi,j−1| ≤ min(|vi,j+1 − vi,j |, |vi,j − vi,j−1|). (5.4)

When used with the local constant velocity technique introduced in Sec 5.2.3, which is
almost as accurate as the full backward error compensation algorithm, the difference
between (5.3) and (5.4) is small in our numerical experiments. Note that one could
also replace the u and v in (5.4) by their absolute values, which will also detect the
stationary points of the velocity field.

5.2.2. Improved Interpolation Technique for the CIR Scheme. The first
order CIR scheme can generate some grid effects when the local velocity is almost
zero. Consider equation (2.1) in 1D with the velocity v(0) = 0, v(x) > 0 for x < 0
and v(x) < 0 for x > 0. Initially the level set function is φ(x, 0) = −|x| + 0.5.
This corresponds to the case that two interfaces at x = 0.5 and −0.5 are about to
merge. If computed with the first order CIR scheme, φ(0, t) will be 0.5 for all t > 0,
i.e., the two interfaces will never merge. See Fig. 5.9. This phenomenon reminds
us the entropy-violating solution in the case of a sonic rarefaction wave when using
the Roe’s approximate Riemann solver [21] for solving the Euler equation. There are
many methods to fix the problem, such as Harten and Hyman [9], Osher [18] and
Tadmor [31]. We are going to use a “velocity splitting” strategy, or a Lax-Friedrich
framework analogous to the one used in the finite difference ENO scheme (Shu and
Osher [23]). Recalling the CIR scheme (2.2), the following modified scheme can be
used in every step of the backward error compensation algorithm (including the local
constant velocity method in Sec. 5.2.3), only at places where the non-smoothness of
the velocity field is detected
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Φ̃(xi, tn+1) = Φ(x̂i + δe, tn),
˜̃Φ(xi, tn+1) = Φ(x̂i − δe, tn),

Φ(xi, tn+1) = 1
2{Φ̃(xi, tn+1) + ˜̃Φ(xi, tn+1)},

(5.5)

where x̂i = xi − v(xi, tn)∆tn, Φ(y, tn) is the local linear spatial interpolation of
{Φ(xj, tn)} at point y, e is a unit vector not aligned with the grid and δ ∈ (0,∆x)
is a small perturbation factor. We choose δe = (0.2∆x, 0.2∆x) in 2D and δe =
(0.2∆x, 0.2∆x, 0.2∆x) in 3D throughout the computation.

When the backward error compensation algorithm is applied, this technique re-
duces artifacts near interface corners and places where there are topological changes
of the interface.

5.2.3. Local Constant Velocity Technique in the Computation of the

Error Compensation Term. We can locally freeze the velocity field in the first
two steps of backward error compensation algorithm, motivated by the less diffusive
results for the Zalesak’s problem in which the velocity field is smooth. For every grid
point xi where the non smoothness of the velocity field is detected, do the following
steps 1 and 2.
Step 1. Solve the equation ∂φ

∂t
+ v̄i · 5φ = 0 forward in time to obtain Φ̃n+1 by

the CIR scheme (2.2), with Φn being the initial value at the time tn and
v̄i(x) = v(xi, tn) for any x.

Step 2. Solve the same equation backward in time by the same method to obtain Φ̆n
i .

This is equivalent to solving the time reversed equation ∂φ
∂t

− v̄i · 5φ = 0

forward in time by (2.2) for a time step ∆tn, with Φ̃n+1 being the initial
value.

Note that Φ̃n+1 at only a few grid points needs to be calculated in step 1 in order to
obtain Φ̆n

i in step 2. For all other grid points Φ̆n
i can be obtained in batch by the first

two steps of the backward error compensation algorithm described in section 2. After
Φ̆n

i at every grid point xi is computed, we resume the original non-homogeneous
velocity field v(x, t) and perform the usual Steps 3 and 4 of the backward error
compensation algorithm.
Remarks. 1. Note that near singular points of the velocity field, essentially all numer-
ical schemes degenerate to no more than first order. Being able to approximate the
exact solution without generating excessive diffusion near singular points is impor-
tant, and it is usually non trivial to do. This technique seems to be not sensitive to
the choice of the non-smoothness detector for the velocity field in the sense that one
could apply it to a larger set of grid points containing those where there are singulari-
ties in the velocity field, without introducing excessive diffusion. In fact we have even
applied this local constant velocity algorithm to all grid points in the computation
of the Zalesak’s problem and generated similar (slightly worse) results as in Fig. 5.1.
On the other hand, for this problem if we set the backward compensation term to
zero for all grid points(i.e., apply the method of Sec. 5.2.1 everywhere), the slotted
disk will shrink to almost nothing (with ∆x = 1) after one revolution.
2. We have also tried to use v̄i(x) = v(xi, tn+1) for any x in Step 2 of the above
algorithm for many of our test examples and the results are similar.
3. The backward error compensation algorithm can also be used as an interpolation
technique (3rd order in smooth region) for Lipschitz continuous data. For example,
given the Φ values at grid points {xi}, we can obtain an approximate Φ value at a
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point y as follows. First set v ≡ (xj − y)/∆x where xj is a grid point closest to y.
Then solve equation (2.1) by the CIR scheme with backward error compensation for
one step with the time step size ∆x. The new Φ value at xj will be the interpolated Φ
value at y. This is similar to the idea of extending a quantity defined on the interface
to a neighborhood of the interface with a PDE-based method, see [34, 1]. Since it only
requires local linear interpolation in space, it could be easily adapted to a triangular
mesh or other irregular meshes. This will be further explored in the future.

5.3. Examples. We present an example based on the slotted disk shown in
Fig. 5.1 in which the disk is shrinking with a normal speed 0.2. (The velocity field
is v = −0.2 5 φ/| 5 φ|.) The disks at the different times are plotted in Fig. 5.7. At
the time T = 11 we can see that the upper corners of the slot become rounded and
the lower corners stay sharp, which coincide with the entropy solution. Note that the
exact annihilation time is T = 31.25. When computed by the method in Sec. 5.2.1,
the disk vanishes between the times T = 29 and 30. Computed by the method in
Sec. 5.2.2 and 5.2.3, the disk vanishes between the times T = 31 and 32, which shows
that the method has smaller diffusion near singularities.

Next we compute the merging of 4 circles expanding with constant normal velocity
0.2. The velocity field is given as v = 0.25φ/|5φ|. The level set function is initially
set to be negative inside the circles. The results are shown in Fig. 5.8. Clearly
all methods are able to maintain the sharp corners after merging without generating
artifacts. The exact annihilation time of the inner part is estimated to be between
T = 27 and 27.7. At the time T = 27 we can see from the graph that the inner part
computed by the method in Sec. 5.2.2 and 5.2.3 still exist (it disappears at T = 28)
while the one computed by the method in Sec. 5.2.1 has vanished between T = 26
and 27.

Finally we conduct a test on the Enright problem [4]. It is a 3D sphere deformed
by an incompressible flow field proposed by Leveque [15]. The computational domain
is [0, 1]× [0, 1]× [0, 1] with 100×100×100 uniform rectangular cells. Initially a sphere
of radius 0.15 is centered at (0.35, 0.35, 0.35). The velocity field is given by

u(x, y, z, t) = 2 sin2(πx) sin(2πy) sin(2πz)g(t),
v(x, y, z, t) = − sin(2πx) sin2(πy) sin(2πz)g(t),
w(x, y, z, t) = − sin(2πx) sin(2πy) sin2(πz)g(t),

where g(t) = cos(πt/T ) and T = 3. From the velocity field, one can see that the
deforming process is time-reversed at t = T/2 and will restore the original sphere at
t = T . At t = T/2, the 3D sphere has been deformed to be like a pancake where
some parts are as thin as the size of a grid cell. We compute the problem with the
methods in Sec. 5.2.2 and Sec. 5.2.3. The time step size is chosen with CFL factor
0.2 and no larger than 0.2∆x. The computational results are shown at different times
in Fig. 5.11. On a 1.8 GHz processor (AMD Opteron 244), the computation takes 2
hours and 28 seconds. From the graphs we can see that the deformed sphere starts
to break down near its thinnest part at T = 1.2. Since the recovered sphere at
t = T depends sensitively on the thickness of the deformed one at t = T/2, when
the level set representation of the interface is at its limit, we observe large errors at
later stages. The particle level set method [4] uses Lagrangian particles to correct the
level set solution and is very accurate in recovering the sphere. However, compared to
a standard high order implementation of the level set method (80% volume error at
t = T in a comparison test in [4]), the percentage volume error is small (under 4.5%
during the computational time interval, see Fig. 5.10). The computational results on
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a 200 × 200 × 200 mesh can be found in Fig. 5.12. The volume error is within 2.3%,
see Fig. 5.10.
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Fig. 5.1. Zalesak’s problem. Comparison of a slotted disk that has been rotated one (left) and
two revolutions (right). The level set equation is computed by the CIR scheme with backward error
compensation and re-distancing, CFL=3, 100 × 100 (∆x = 1).

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Fig. 5.2. Zalesak’s problem. Comparison of a slotted disk that has been rotated one (left) and
two revolutions (right). The level set equation is computed using the CIR scheme with backward
error compensation and re-distancing, CFL = 3, 200 × 200 (∆x = 0.5).
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Fig. 5.3. Zalesak’s problem. Relative area loss of the slotted disk as a function of time. The level
set equation is computed using the CIR scheme with backward error compensation and re-distancing,
CFL = 3.
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Fig. 5.4. Zalesak’s disk on a sphere, Reprinted from [13].

Fig. 5.5. Zalesak’s disk after one (left) and two (right) revolutions, computed by the CIR
scheme. Reprinted from [13].

Fig. 5.6. Zalesak’s disk after one (left) and two (right) revolutions, computed by the CIR
scheme with backward error compensation. Reprinted from [13].
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Fig. 5.7. Shrinking Zalesak’s Slotted Disk. Normal velocity 0.2, ∆x = ∆y = 1, ∆t = 0.4∆x.
Left: local turn-off of backward error comp. as in Sec. 5.2.1, T = 11, 17, 23, 29. Right: local constant
velocity method as in Sec. 5.2.3 at times T = 11, 17, 23, 31.
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Fig. 5.8. 4 expanding circles of slightly different radii. Normal velocity 0.2, ∆x = ∆y = 1,
∆t = 0.4∆x. Left: local turn-off of backward error comp. as in Sec. 5.2.1, T = 0, 11, 26, 40. Right:
local constant velocity method as in Sec. 5.2.3, T = 9, 11, 27, 40.
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Fig. 5.9. A non merging situation caused by the first order CIR scheme.
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Fig. 5.11. Deformation of a ball on a 1003 mesh at times 0, 1
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Fig. 5.12. Deformation of a ball on a 2003 mesh at times 7
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