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Abstract

We propose a fully conservative Front Tracking algorithm in two space
dimension. The algorithm first uses the point shifted algorithm [12] on two
adjacent time levels and then constructs space time hexahedra as computa-
tional units. We develope and prove a successful geometric construction under
certain interface requirement. This algorithm has a first order local truncation
error for cells near the tracked discontinuity, which is an improvement by one
order of accuracy over most finite difference schemes, which have O(1) local
truncation errors near discontinuities.
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1 Introduction

We propose and demonstrate a tracking finite difference algorithm which is (a) fully
conservative and (b) improves local truncation error by one order (from O(1) to
O(Az) near tracked discontinuities.

Discontinuities in the solutions of systems of nonlinear hyperbolic conservation
laws are widely recognized as a primary difficulty for numerical simulation. Surpris-
ingly, the nonlinearities actually help, as they cause information, which flows along
solution characteristics, to flow into the discontinuity, and disappear there. The
nonlinear discontinuities (shock waves) function much as a black hole in this regard.
Included in this flow of information are the solution errors generated by the non-
linear discontinuity. Because the nonlinear discontinuities absorb errors associated
with their numerical approximation, these errors do not grow or spread with time.

Nonlinear equations also have linear discontinuities. In gas dynamics these are
the contact discontinuities, across which temperature or shear velocities can be dis-
continuous. Errors in these modes are never forgiven and never dissipated. For this
reason the linear modes are more difficult to control numerically. The dominant
numerical solution error is typically associated with discontinuities in these linear
modes and occurs as diffusion of mass, vorticity, and temperature. These errors
increase with time.

Front Tracking was introduced to give special treatment to solution with dis-
continuities. Perceptions that Front Tracking software difficulties would be insur-
mountable were too pessimistic, and a robust, validated code has been developed
and used in production simulation of fluid instabilities [5, 7, 6, 4]. See also the URL
http://www.ams.sunysb.edu/~shock/FTdoc/FTmain.html. Here we address an al-
gorithmic issue: formulation of a conservative tracking algorithm. In its original
formulation, conservation was enforced only in regular grid cells, those not cut by
the tracked front. The missing points of the computation stencil, in the case of a
front cutting through the stencil, are filled in as ghost cells, with the state values
obtained by extrapolation from nearby front states of the same component. Thus
the state values are double valued near the front, with the left-component states
extending by extrapolation for a small distance into the right component, and vice
versa. The use of ghost cell states was introduced into Front Tracking in 1980 [9].
With the ghost states thus defined, the interior solver follows a conventional finite
difference algorithm.

In the level set method [3] and the original Front Tracking, ghost cells constructed
near the front (but using entropy extrapolation) allows a standard difference opera-
tion update. As with Front Tracking, the ghost cell extrapolation is non conservative
and leads to O(1) local truncation error.



Here we propose an algorithm which is conservative for all grid cells, including
the irregular ones cut by the front. The algorithm we propose is related to earlier
work of Swartz and Wendroff [13], Harten and Hyman [11], and Colella and Chern
[2], but differs from these works in several ways. We emphasize here tracking of a
contact, rather than the shock tracking of [2]. Our support for fronts is fully general
and can be used for unstable, convoluted, and bifurcating interfaces. The 1D version
of this algorithm [8] is formally second order accurate in the L; norm except for
interactions of tracked waves. An important difference with [13] is our discussion of
the extension to higher dimensions.

2 The Two Dimensional Algorithm

Consider the two space dimensional system of conservation laws
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defined in a spatial domain ). Assume that €2 can be partitioned by a uniform
square grid and the boundary is along the grid lines. The side of a cell in the grid is
of length Aux.

Our algorithm is organized into three main steps. The first is the construction of
a spatial grid locally conforming to the old (time ¢,,) and new propagated (time ¢, 1)
INTERFACE. The second is construction of a space time grid joining these two, and
the third is a finite volume discretization associated with the space time conforming
grid.

In the following two sections, we emphasize the major results and leave the more
technical lemmas and some proofs to the Appendix.

2.1 The Point Shifted Algorithm

In this section we describe a simple point shifted algorithm to achieve an INTER-
FACFE conforming grid node displacement at a fixed time level. We begin with
hypotheses which are requirements on the topology of the INTERFACE and the size
of the cell. In the present study the INTERFACEFEs are topologically equivalent to a
union of line segments or circles. Thus we postulate that triple or multiple CURVE
intersection points do not occur. INTERFACEs that involve topological change dur-
ing the time evolution can be resolved by premerging when the distance of the gap to
be merged is within Axz. Analysis of this step is out of the scope of the present paper,
but is supported in the numerical implementation of the point shifted construction.



The discretized INTERFACE [10] is a disjoint union of non intersecting CURVEs.
Each CURVE is piecewise linear and connected, and composed of BONDs. Each
BOND s a pair of INTERFACE POINTs or POINTS, and (conceptually) the straight
line segment joining them. Each CURVE is assigned an orientation which remains
unchanged during the propagation of the INTERFACE. 1f all the POINTs are on
the interior of cell edges with at most one POINT occuring on the interior of any
given grid cell edge, then the INTERFACE is called grid based [7]. Propagation of
the POINTs of a grid based INTERFACE will yield a general INTERFACE, not
grid based, as there is no reason for a propagated POINT to lie on a grid cell edge,
just because it starts on one. According to the grid based construction of [10], we
consider this propagated INTERFACE as a collection of polygonal CURVEs in R?.
Crossing points of the CURVE with grid cell edges are inserted as new POINTS.
The propagated old POINTs will be deleted (named images of propagation in this
sense), but their ordering along the CURVEs will be retained for later use in the
construction of space time interface. The CURVE is then reconstructed, as straight
line segments joining these new POINTs. In this process, the CURVE is displaced
by an amount O(Az?), assuming that the CURVE is smooth, so that all angles
between neighboring BONDs are O(Az). Also all images of propagated POINTS
on the original CURVE can be projected onto the grid based CURVE, with their
ordering unchanged and a maximum displacement O(Az?).

This grid based INTERFACE is the starting point for the interface conforming
volume grid which we construct here. An INTERFACEFE with a displaced rectangu-
larly indexed volume grid is called a point shifted INTERFACE. 1t is point shifted
if the grid corners have been displaced so that all POINTs are at displaced grid cell
corners and all BONDs are either the edges or diagonals of displaced grid cells.

Here we construct an algorithm which yields a point shifted INTERFACE at
each time step. In two space dimensions, we use the front propagation algorithm
developed in [5, 7, 6, 4] to follow the INTERFACE evolution. We first projected the
propagated INTERFACE to be grid based [7], by inserting new POINTS at cell edge
crossings, and then removing old POINTs. To this INTERFACE we apply the point
shifted algorithm [12] near the front on each time level to align the grid nodes nearest
to the INTERFACE so that there is no intersection between the INTERFACFE and
the interior of cell edges (i.e., the INTERFACE passes through displaced grid cell
corners only and thus lies on the diagonals and edges of displaced grid cells). Some
POINTS are deleted in this construction; again with maximum displacement O(Az?)
of the propagated old POINTs and the propagated CURVFEs. We call the result an
interface conforming grid node displacement.

Hypothesis 1 The INTERFACE is assumed to be grid based. FEach CURVE is
topologically equivalent to a line segment with its two end points on the boundary, or
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a circle contained in the interior of Q. (Triple points where three or more CURVEs
meet at a point are disallowed.) Fach CURVE has at least three BONDs and the
mazimum angle between two adjacent BONDs is O(Ax). All interior POINTs of the
CURVE must be interior to Q). There is no topological change of the INTERFACE
during the time interval of computation.

To avoid consideration of degenerate cases, we assume that POINTs never lie
exactly at center of a grid cell edge.

Hypothesis 2 At most one BOND intersects the interior of a given cell, and if this
occurs, the CURVE separates the interior of the cell into two non-trivial domains.

This Hypothesis implies that at most two edges of a cell intersect the INTER-
FACE.

Hypothesis 3 No CURVE is totally contained within a square of side 2Ax made
up of four cells.

A grid node has grid distance d to the INTERFACE if there is a grid line segment
of length d connecting the grid node to the INTERFACE. A grid node will have
multiple grid distances. We call the smallest one the shortest grid distance. A grid
node is called fixed if all its grid distances are greater than Ax/2.

We call a grid node which is not on the boundary shiftable if one of the following
three conditions holds: (See Fig. 1.)

(I1) Exactly one of its grid distances is less than Ax/2. If this grid distance is on
a grid line parallel to the z-axis, we call it z-shiftable, otherwise we call it
y-shiftable.

(I2) Exactly two of its grid distances are less than Az /2 and they are not on the
same grid line. If the shortest grid distance is on a grid line parallel to the z-
axis, we call it z-shiftable; if the shortest grid distance is on a grid line parallel
to the y-axis we call it y-shiftable. In the degenerate case of equal grid distance,
the node is both x-shiftable and y-shiftable.

(I3) Exactly three of its grid distances are less than Az /2. In this case, the node is
shiftable in the direction of the single grid distance.

We call a grid node which is on the boundary shiftable if it is not at a boundary
corner, i.e. not at the intersection of two boundary lines, not on the INTERFACE
and if the following condition holds: (See Fig. 1.)
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Figure 1: Several cases for a shiftable node N

(B) Exactly one of its grid distances along a boundary grid line is less than Az /2.
We call the grid node z-shiftable if the boundary grid line is parallel to z-axis;
otherwise we call it y-shiftable.

If a node is neither fixed or shiftable, we call it unshiftable.

Hypothesis 4 At each time level during the computation, every grid node is either
fixed or shiftable.

For each grid node, there is either one (I1, 13, B) or two (I12) interface POINTs
to which it can be shifted. For each interface POINT, there is at most one grid node
which can be shifted to it. Boundary grid nodes can be shifted only to boundary
interface POINTs and interior (non boundary) grid nodes can be shifted to non
boundary interface POINTs only.

The point shifted algorithm consists of shifting all shiftable nodes to interface
POINTs with, for example, a choice of the x-direction in case of ambiguity. The
POINTs to which no grid nodes are shifted are deleted. We state an obvious result
concerning the algorithm.

Proposition 1 Assume Hypotheses 1-4. If a grid node is shifted to the INTER-
FACE, then it is shifted to a POINT located at an intersection of the INTERFACE
with a grid line. The intersection point lies within an open circle of radius Ax/2
centered at the original position of the node.

Theorem 1 Assume Hypotheses 1-4. Then the topology of the grid remains un-
changed. Each cell area is between 0.5Az% and 2.5Az%. Each POINT of the IN-
TERFACE is a shifted grid cell corner and each BOND is a shifted grid cell edge or
diagonal.



After the point shift algorithm, it is easily seen from Proposition 1 and Theorem 1
that the length of each BOND is no more than V5Az. Because of the bound on

BOND angles, the BOND is within a O(Axz?) displacement to the grid based CURVE
segment it approximates. We have the following corollary.

Corollary 1 Assume Hypotheses 1-4. If the grid based CURVE is within O(Ax?)
displacement to the smooth interface curve, then after point shift algorithm, the
CURVE is still a O(Ax?) approzimation to it.

2.2 Construction of the Space-Time Hexahedra

We require a space-time triangulated interface surface joining the two spatial IN-
TERFACEs at times t,, and ¢, ;. This construction is the major task of the present
section.

The point shifted algorithm does not change the rectangular index structure of
the mesh. Thus we connect the nodes of a cell D} at time ¢ = ¢,, to the nodes
of its corresponding cell D?*! at time ¢ = ¢,,; to form a space-time hexahedron.
We call D!"*! the top of the hexahedron and D! the bottom. If the both cells have
not been affected by the point shifted algorithm we call the hexahedron regular,
otherwise it is called irregular. We call a hexahedron mized if the interface passes
through its interior; otherwise it is pure. The mized hexahedra are divided into pure
partial hexahedra, and if necessary, these are combined with neighbors to form the
finite volume space-time grid suitable for construction of a conservative difference
algorithm in Sec. 2.3

Two hexahedra are adjacent if they share a non-trivial surface which is not on
the space time interface. It is easy to see that two adjacent hexahedra must be on
the same side of the space time interface. We consider INTERFACEs after the point
shift algorithm. In this case, each POINT is a displaced, or shifted grid node, and all
BONDs, connecting adjacent POINTs are edges or diagonals of displaced or shifted
grid cells. We also observe that the POINTs P, and P,, defined at a common or
adjacent time level, that is both at times ¢,, or t,,,1, or one at time ¢, and the other
at time ¢,,,1, share a common space time hexahedron if and only if they are identical,
adjacent or diagonally adjacent as shifted grid nodes in space. We say that P; and
P, are spatially nearest neighbors in this case. These points are strictly spatially
nearest neighbors if they are identical or adjacent grid nodes (diagonal adjacency
excluded) in space. Besides all the hypotheses in Section 2.1, we also assume that
the CFL number is less than 1/2 throughout this section so that each POINT of the
INTERFACE can be propagated a distance less than Az /2.

Hypothesis 5 The CFL number is less than 1/2.



We introduce terminology for Proposition 2 and the supporting Lemmas 4-7. (See
Appendix 2.)

Let B™ be a BOND connecting adjacent POINTs P, and P, at the time level
t,. At the time level t,.1 B™ has been propagated and point shifted to become the
INTERFACE polygonal segment b™ ™' with a left end point M, as the image of P,
and a right end point My as the image of Ps.

Proposition 2 Assume Hypotheses 1-5. In the ordering of POINTs along b"*!,
those spatially nearest neighbor to Py only (if any) lie closest to My, followed by
POINTs (if any) spatially nearest neighbor to both Py and P, followed by POINTs
(if any) spatially nearest neighbor to Py only. The middle set of POINTSs necessarily
occurs if both of the other two are non empty.

Proposition 3 Assume Hypotheses 1-5. Let By be a BOND at the time level t, .4
connecting adjacent POINTs P, and P,. Suppose that adjacent time level t, POINTs
are propagated to Bj. Then those spatially nearest neighbor only to Py (if any)
occur first in the INTERFACE order, followed by POINTs (if any) spatially nearest
neighbor to both Py and P,, followed by POINTs (if any) spatially nearest neighbor
only to Py. The middle set of POINTs necessarily occurs if both of the other two are
non empty.

We construct the space time interface as triangles whose edges joint POINTs on
successive time levels ¢, and t,,;, and which are spatially nearest neighbor. Each
edge of the triangle is then a surface edge or diagonal, or interior diagonal of a single
space time hexahedron. The only further requirement, to avoid tangling of the space
time interface, is that the edges preserve order along the interface, as a mapping
from t,, POINTSs onto t,,, POINTs.

The correspondence between interface POINTs is nearly determined by Proposi-
tions 2 and 3. There is an alternation between expansion and contraction events in
this pairing, as defined below;

Expansion: The INTERFACE segment b"*! defined by propagation and shifting of
the BOND B contains one or more POINTS.

Contraction: A single time level ¢,,,; BOND contains the images defined by prop-
agation and shifting of one or more consecutive time level ¢, POINTs.

For an Expansion event, following the terminology of Proposition 2, we connect
(introducing triangle edges) Py to all POINTS on [M,, Ms] which are spatially nearest
neighbor to P; but not P,. We connect to Py all POINTS on [ M, M| spatially nearest
neighbor to P, but not P;. The POINTS, if any, spatially nearest neighbor to both
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Figure 2: Construction of space time interface joining the time ¢,, and ¢, interfaces.
Upper three frames, expansion case; lower three frames, contraction case. In case 1,
all POINTs are spatially nearest neighbor to Py, in case 2 to P, and case 3 includes
at least one mixed POINT. “x”: interface POINT; “0”: image of propagation.
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Figure 3: Adjacent events are necessarily of opposite type. “x”: interface POINT:
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Figure 4: Either P, connects to P, or P, connects to P;. “x”: interface POINT; “o”:
image of propagation.

P, and P, are split; those before and including a reference POINT P; are connected
to P, while those including P; and after are connected to P,. See Fig. 2, upper
frames.

For a Contraction event, following the terminology of Proposition 3, we connect
Py to the points propagating onto [P;, P,], which are spatially nearest neighbor to
P, but not P,. Similarly we connect to P, those spatially nearest neighbor to P,
but not P;. The remainder, spatially nearest neighbor to both P, and P, are split
as above, with a separating point P; connected to both P, and P,. See Fig. 2, lower
frames.

Two events of the same type can not be adjacent to each other. See Fig. 3.
Therefore it remains to show that the triangles from the Expansion and Contraction
events join, and complete the space time interface. Assume that the Expansion is to
the left of the Contraction. There is a gap between the two sets of triangles only if all
Expansion triangles join to the left (case 1) and the contraction triangles join to the
right (case 2) as we now assume. The gap is a quadrilateral and one of its diagonals
must be added to complete the triangulation. According to Lemma 6 (see Appendix
2), either the right most time ¢, POINT of the Expansion event is spatially nearest
neighbor to the left most time ¢,, POINT of the Contraction event, or the right most
time ¢, POINT of the Expansion event is spatially nearest neighbor to the left most
time ¢, POINT of the Contraction event, so that we can connect one diagonal pair
of POINTs of the quadrilateral to triangulate the gap. See Fig. 4. The case of a
Contraction to the left of an adjacent Expansion is similar. In the case that a spatial
interface CURVE is topologically equivalent to a circle, each space-time interface
event is adjacent to a space-time interface event on the left, and another one on the
right. Therefore the above process fully triangularizes the space time surface joining
the two CURVEFEs at the two time levels. If a CURVFE has its two end points on
the boundary, each of the end points (which becomes a POINT after the point shift
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algorithm) must be in the same space hexahedron at time levels ¢, and ¢,,; so that
we can connect the end point at time levels ¢,, to the end point at time level ¢, to
complete the triangulation. This requires that end point should be propagated less
than a distance Az /2 along the boundary grid line, which depends on the states near
the end point, the angle at which the INTERFACFE intersects the boundary and the
time step size (or the CFL number) we choose. We formulate this requirement as
the following hypothesis:

Hypothesis 6 The CFL number chosen during each time step must ensure that
each intersection point of the CURVE with the boundary is propagated less than a
distance Ax/2 along the boundary grid line.

We summarize the above discussion with the following theorem:

Theorem 2 Assume Hypothesis 1-6. After the above triangulation process, each
triangle on the space time interface will be on the face or interior of a point shifted
space time hexahedron, with its base being an edge or diagonal of the top (or bottom)
cell of the hexahedron and its other vertex being a grid node of the bottom (or top)
cell of the hexahedron.

Proof: Each resulting triangle on the space-time interface has an edge, say the
base, which corresponds to an interface BOND, i.e., an edge or a diagonal of a cell
on t, (or t,,1), while the other vertex of triangle corresponds to an interface POINT,
i.e., a point shifted grid node on ¢, (or t,). Since the vertex is spatially closest to
the other two vertices of the triangle, it is easy to see that all of its three vertices
will share a common space-time hexahedron. The proof is complete.

The mized hexahedron is separated into two parts, each of which lies on one side
of the space time interface. These parts are called pure partial hexahedra. We can
similarly define a cell to be regular, irreqular, pure, mized or partial. Any partial
hexahedra with a trivial top will be merged with an adjacent pure hexahedron or
partial hexahedra having a nontrivial top. Recall that two adjacent hexahedra are on
the same side of the interface. The merging process can be accomplished as follows:

Merge every pure or partial hexahedron having a nontrivial top with adjacent par-
tial hexahedra having trivial tops which have not been merged elsewhere. Denote the
resulting polyhedra the intermediate hexahedra. Merge every intermediate hexahedron
repeatively with adjacent partial hexahedron having a POINT top which have not been
merged elsewhere. Denote the resulting polyhedra the big hexahedra.

After the merging process, we also call the remaining pure and partial hexahedra
big hexahedra for equivalence in the next computation. The following lemma ensures
the success of the above algorithm.
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Lemma 1 Assume Hypothesis 1-6. If a polyhedron is constructed by merging any
number of adjacent partial hexahedra with trivial tops, then the polyhedron will be
adjacent to a pure or partial hexahedron.

Proof: At least one non trivial piece (a triangle) of the side surface of the poly-
hedron is not on the boundary or the space time interface, otherwise the topological
structure of the INTERFACE changes during this time step and Hypothesis 1 is
violated. The proof is complete.

Theorem 3 Assume Hypothesis 1-6. After the above merging process,

(1) every partial hezahedron with a trivial top will be merged into a big hezahedron
with non trivial top;

(2) every big hexzahedron has a non trivial top which is a pure cell or a partial cell.

Proof: Let H be a pure or partial hexahedron with trivial top, then it is adjacent
to a pure or partial hexahedron from Lemma 1. We can separate it into several cases.

(a) The top of H contains a BOND of the t,,1 INTERFACE. Then the BOND
must be the edge of a pure or partial cell (say C) on the same side of the space
time interface since the BOND can not be on the boundary according to Hypothesis
1. Therefore H must be adjacent to the pure or partial hexahedron with C' as its
top and the algorithm will merge all such partial hexahedra into the intermediate
hexahedra.

(b) The top of H is a POINT and H is adjacent to a partial hexahedron with a
trivial top which consists of BONDs, or to a pure or partial hexahedron with a non
trivial top. Then it will be merged either with an intermediate hexahedron (due to
(a)) or with a pure or partial hexahedron with a non trivial top.

(c) The top of H is a POINT P and H is adjacent only to partial hexahedra
with a POINT top P. Let M; be the polyhedron resulting from merging all the
adjacent partial hexahedra with a POINT top P. Then M; consists of at most four
partial hexahedra with the POINT top P since P can belong to at most four pure
or partial hexahedra on the same side of the space time interface. From Lemma 1
M is adjacent to a pure or partial hexahedron with non trivial top or to a partial
hexahedron with a trivial top which consists of BONDs. In the first case M; will be
merged with the pure or partial hexahedron with non trivial top. The second case is
similar to the previous case (b).

The first statement of the Theorem is proved. The second statement is from the
observation that a pure or partial hexahedron with a non trivial top (a pure cell or a
partial cell) will merge only with hexahedra with trivial tops. The proof is complete.
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Note that the top of a big hexahedron (including the trivial parts) is within the
union of the top cell (or partial cell) and its spatially closest neighbors, therefore the
total number of pure or partial hexahedra in the big hexahedron is bounded. Actually
in most cases of the computation the merging process yields the big hexahedron
consisting of two pure or partial hexahedra. The number of pure or partial hexahedra
in the big hexahedron could become larger if the radius of curvature of the moving
CURVE is closer to the mesh size.

Note that the merging process does not increase the computational complexity
since the net outflux of a big hexahedron is equal to the sum of the net outflux of
each pure or partial hexahedron contained in it.

Since after the merging process the big hexahedron will have either a cell or a
partial cell as its top, this construction does not change the reconstruction of state
functions at the next time level discussed in the next section.

2.3 The Reconstruction, Limiter and the Numerical Scheme

Suppose at the time level ¢ = ¢, we know the approximate state averages on each
cell, regular, irregular or partial. We want to reconstruct a piecewise linear state
function on these cells with 2nd order accuracy. The reconstruction of the piece wise
linear state function on irregular cells follows [1], with modifications to the limiter
and some simplification. Let D! be a pure cell, reqular, irregqular, or partial with
approximate state average U; and cell center (centroid) Y;, surrounded by any of
these types of cells D7, Dy, Dj', Dy, with approximate state averages Uj", Uy, U;", Uy,
and cell centers Y}, Y}, Y, Y, respectively, on the same side of the INTERFACE .
Let U; = U; + (a,b) - (X — Y;) be the 2nd order accurate linear state function on D?,
where a,b are two constants. Choose any two surrounding cells, say D7, Dy’ so that
Y;, Y}, Y, are not colinear. We can determine a, b by solving the following equation:

dz(YJ) = U}l,
Uy = upr. 2)

Further, for the solution of the above equation to be well conditioned, we require
the angle ¢ formed by line segment Y;Y; and Y;Y} to satisfy 0 < 6; < 0 < 0, <
m where 01,0y are two constants. We repeat the above procedure until we find
all possible solutions, say, a;, b;, for all 0 < ¢ < I where I < 4. Then we set
a = minmod{ay,--- ,ar} and b = minmod{by,---,br}. When there are not enough
surrounding cells on the same side of the INTERFACE, we choose a,b = 0 so that
the reconstruction becomes first order.

When D} is a regular cell surrounded by regular cells, the reconstruction process
is simpler. Let the cell center of DI be (i;Ax,iyAy) with neighboring cell centers
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{((21 + kl)AJI, (ZQ + kQ)Ay)‘kl, k2 = —1, 0, 1} Let

xslope; = minmod{[U((i + k1) Az, (iy + ko) Ay)—
U((iy + k1 — 1) Az, (ia + ko) Ay)] /A | (3)
I{Jl :0,1,]{32 1,0,1},

and
yslope; = minmod{[U((i; + k1) Az, (ig + k2)Ay)—
U((ir + k1) Az, (iz + ko — 1)Ay)] /Ay | (4)
k)l - *]., 0, ]., kg - 0, ].},
and define

U; = U; + xslope; - (z — i1 Az) + yslope; - (y — i Ay).

This is clearly a second order reconstruction which is better suited in multiple di-
mensional problem than operator splitting single line reconstruction (or limiter) for
a uniform rectangular grid, because for example an untracked discontinuity in 2D
may be in the form of a strip of width between 2Axz and 3Axz. When the strip is
almost parallel to and fully covers the line in which the single line reconstruction
occurs, one cannot expect the limiter to choose any smooth solutions nearby.

Next we apply the technique in Section 2.2 to generate space-time hexahedra be-
tween time levels t” and #"*!. Let H be a big hexahedron with top D"*! and bottom
D", and triangle sides {S;} with a unit outer normal n; and centroid Z;. Notice
that some elements of the {S;} may be on the approximate space time interface.
Integrating (1) over H, we obtain

D Ut = DY Ut Y / (u, f, g) - nids. (5)
i 7S
Here |D™| represents the area of D™ and similarly |S;| is the area of S;. The
numerical scheme can be written as
DU = DU =Y |8 Ui | Wign), 9 Wign)) - 1 (6)

i

where Z/N{Zm can be calculated as follows: First use a Cauchy-Kowalewski procedure
on the reconstructed state function on each side of S; to get 2nd order approximate
states at Z; on the respective side of S;, say U;; and U;,. If S; is not on the tracked
space time interface, we can simply use a Riemann solver, say R, to get the middle
state on S;, i.e.

Ui m = R(Uiy, Uy).

If S; is on the tracked space time interface, we use the Riemann solver to get the
left and the right side states U, 1 and U, i.» on the wave we are supposed to track, and
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the wave speed v;. Then Z;{Zm in (6) can be replaced by either Z:li’l or Z/Nliyr, depending
on whether [ or r is located within H or not. Also the n; in (6) should be replaced

2

by n;/|7;|, where n; = (=0;v;\/n2, + n? Nz, niy), 1 = (i, nig, niy) and 6; is a sign

Y7
function which is 1 if the tracked wave from the Riemann solver is in the direction
of (niy,niy), —1 otherwise. Note that f; is normal direction of the tracked space
time wave from the Riemann solver, therefore this modification ensures that the
Rankine-Hugoniot condition is satisfied.

The finite volume difference algorithm constitutes a flux through each boundary
of the full, partial and big hexahedron. Since the flux through a boundary face of

the hexahedron is identical when viewed from either side of the face, we have

Theorem 4 ), |D"|U" in the finite volume difference scheme is conserved so
that its increment over any time interval is equal to the net influz at the boundary.

Away from the INTERFACE the scheme is clearly a second order scheme. For
the cells along the INTERFACE, its local truncation error is one order lower than in
the 1D case since we use a piece wise linear INTERFACE and its local displacement
error is O(Az?). The scheme is one order better than untracked schemes, which
typically have O(1) local truncation error at the untracked fronts.

Theorem 5 Suppose the exact space time interface and the solution on either side
of it are smooth. Then the L, local truncation error is O(Azx) for cells adjacent to
the INTERFACE.

Proof: Let the INTERFACE at t,, be the interpolation of the exact interface and
let H be a big hexahedron adjacent to the approximate space time interface. We
apply the finite volume scheme to obtain the approximate state average Z/{i"Jrl at the
time level ¢,,q, with top 7" and bottom B and side boundaries {S;}, where S; is a
triangle. The INTERFACE at time t,,, has an O(Axz?) displacement from the exact
interface according to Corollary 1. The exact space time interface will cut H into
two pieces. Let H; be the piece on the same side of the interface with H. Let T3, By,
and S! be the top, bottom and side boundaries of H; respectively. Let U%“, Ug, be
the exact state averages over Ty and By respectively. Choosing Uy = U, , we want
to show that U™ — U}*! = O(Az). In fact from (6),

T = Bl > |Sil Ui f Ui ), 9 Ui ) - i (7)
The exact solution satisfies
U = 1BV, — | (), g(u) - nds. (8)
Sl
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Note that |B|Up — |B1|Up, = O(Az?) due to the interpolation error from the
INTERFACE at time t,,. Also the numerical flux in (7) approximates the exact flux
in (8) to at least O(Ax®). In fact when S; is not on the approximate space time
interface this is easily seen since fs,-(“" f,9) - nids = |Si|(u, f,9)(Z;) - n; + O(Az?).
When S; is on the approximate space time interface. Because the approximate
space time interface has an O(Axz?) displacement error relative to the exact one,
the difference between their respective areas is of O(Az?) due to the smoothness
assumption of the exact space time interface and the area of |JS; being O(Ax?).
Also the choices of U, and n; in (7) ensure that (Ui, fUim), 9(Uim)) - ni in (7)
is a first order approximation to the integrand in (8) at any point within an O(Ax)
distance from the centroid Z; of S;. Therefore we have

Uptt —uptt = (|L|UR = [T 1T+ UR (7] = T /| 7)), (9)
= O(Ax).

The proof is complete.

3 Appendix 1: Proof of Theorem 1 (§2.1)

Lemma 2 Assume Hypotheses 1-4. If a cell edge connecting grid nodes N1 and N,
intersects a CURVE at a point P, then either Ny or No will be shifted to P, or to an
intersection point of the CURVE with another edge adjacent to P along the CURVE.

Proof: Without loss of generality, suppose the cell edge [ connecting Ny and Ny
is parallel to the z-axis. At least one of the nodes must have grid distance less than
or equal to Az/2, say node N; which is shiftable. We first suppose that Nj is not
on the boundary. If N; belongs to (I1) then Nj is z-shiftable and therefore will be
shifted to P.

If (I2) or (I3) is true for Ny, we consider two cases:

Case 1 N; is z-shiftable, the result is the same as in (I1) during Step 1;
Case 2 Nj is only y-shiftable, then /N; will be shifted to the intersection point adjacent
to P (along the CURVE).

If Ny is on the boundary it will be shifted along the boundary to P or to the
POINT adjacent to P along the CURVE. The proof is complete.

Lemma 3 Assume Hypotheses 1-4. Let (Q be the union of closed mesh cells with
connected interior. Suppose a CURVE enters ) at Py € 0Q) and leaves Q at P, € 0Q)
with the CURVE segment [Py, Po] C Q. Let Py be the intersection point between the
CURVE and a cell edge just prior to Py if it exists; otherwise let Py = Py. Similarly
let Py be the intersection point between the CURVE and a cell edge just after Py if it
erists; otherwise let P3 = P,. Then
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(1) After the point shift algorithm, only the nodes originally in Q) are on the CURVE
segment [Py, Py].

(2) At least one such node will be on the CURVE segment [Py, P3).

(3) If a grid node originally in the interior of Q) is shifted to the segment (P, Py),
then after the point shift algorithm it will be adjacent (along the CURVE) only
to the grid nodes originally in Q).

Proof: From Proposition 1 and Lemma 2 it follows that after the point shift al-
gorithm, at least one grid node originally in () will be on the CURVE segment [Py, Ps]
to prove statement (2). Also from Proposition 1 we know that only nodes originally
in @ will be on the CURVE segment [Py, P,] proving statement (1). Statement (3)
is obvious.

The proof is complete.

Proof of Theorem 1 By drawing an open circle of radius Az/2 centered at
the original position of each grid node, according to Proposition 1 we find all the
possible positions of each node after point shift algorithm. Note that these circles are
disjoint. Because the original interface is grid based, and thus consists of straight line
segments between its crossings with grid lines, the new grid does not introduce any
new intersection between edges and thus the topology of the grid remains unchanged.

Proposition 1 combined with the fact that the shift is along grid lines only gives
the upper bound of the cell area. Hypotheses 2 implies that at most two nodes of a
cell can be shifted to the INTERFACE within its cell boundary by the point shift
algorithm (in other words, at least two nodes of the cell will remain fixed or be shifted
outside the cell), which gives the lower bound of the cell area.

The INTERFACE passes through displaced grid cell corners only, by direct con-
struction. We further assert that if a point shifted interface BOND connects two
nodes, then the two nodes must share a common cell. In fact, if an interior node N
is on a CURVE after the point shift algorithm, from the Hypothesis 3 the CURVE
must intersect the boundary of the square of side 2Ax centered at the original po-
sition of N. Therefore from Lemma 3, after the point shift algorithm, N must be
adjacent only to the nodes originally from the square, each of which share a common
cell with N. If N is a boundary node that is on a CURVE after point shift algorithm,
then it follows from Hypothesis 1 that N will be adjacent to an interior node along
the CURVE, which returns to the previous case. The proof is complete.

4 Appendix 2: Proof of Propositions 2 and 3 (§2.2)

We introduce Lemmas 4-7 following the terminology of Proposition 2.
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Lemma 4 All POINTs on b"t' are strictly spatially nearest neighbors with either
P1 or _PQ.

Proof: The CFL number is less than % Thus any point on B" can propagate
at most a distance less than Az /2. Shifting at each of the time levels ¢, and t,,4
moves the grid nodes at most Axz/2, and only along grid lines. Therefore only grid
nodes with a zero or unit lattice displacement from P; or P, in mesh index space can
be shifted to lie on "*!. The lemma is proved.

Lemma 5 Let M, belong to a BOND connecting adjacent Points Ps and Py. Then
either Py and P3 are spatially nearest neighbors or Py and P, are.

Proof: Let D be a closed square of side 2Ax centered at the unshifted original
position of grid node which is shifted at time ¢, to be the POINT P,. Then M, is
in the interior of D. According to the first two statements of Lemma 3, M; must
be adjacent (along the INTERFACE) to at least one of the grid nodes originally
contained in D before being shifted. In other words, at least one of P3; and P, is
originally in D before being shifted. The grid nodes originally in D are all spatially
nearest neighbor to ;. Thus the proof is complete.

Lemma 6 Assume that at least one of two adjacent POINTs Ps, P, at time level
tny1 lie on 0", Suppose [Py, Py) and [Ps, Py] have the same orientation relative to
the INTERFACE, and that the pairs Py, P3 and P,, P, are spatially nearest neighbors.
Then either Py, Py, or Py, P3 are spatially nearest neighbors.

Proof: The points P, P, P,, P; in cyclic order form a four sided loop of
spatially nearest neighbor grid nodes, when projected to a common time, and viewed
in grid index space. See Fig. 5. Moreover, the points P; and P, belonging to b"*! are
strictly spatially nearest neighbor to either P, or P, by Lemma 4. This fact either
completes the proof directly, or it forces one side of the loop to be a unit lattice
distance (not a diagonal) at most. Each side of the loop is a single point, a unit
lattice line or a unit lattice diagonal. The loop thus consists of a single line (multiply
covered), a unit triangle (one side of the loop reduces to a point), a pair of adjacent
unit triangles, a unit cell or a unit parallelogram (displaced by one lattice site from
being a cell). The doubly displaced parallelogram of Fig. 6 is excluded. We are to
prove that one of the diagonals of this loop is also spatially nearest neighbor. For the
unit parallelogram, the shorter diagonal is a unit lattice diagonal, and its end points
are thus spatially nearest neighbors. The other cases are elementary. The proof is
complete.
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X D
P1 P2
X ® ® O X ® ® D
P2
"X": grid nodes that share a common space time hexahedron with P1
"O": grid nodes that share a common space time hexahedron with P2 o) 0 0

Figure 5: Grid nodes spatially nearest neighbor to a pair of nearest neighbor nodes.

Lemma 7 Assume that b"*' is contained in a BOND connecting adjacent POINTs
P3 and Py, Suppose [Py, Ps] and [P3, Py| have the same orientation relative to the IN-
TERFACE, and that the pairs P, Py and Py, Py are both spatially nearest neighbors.
Then either Py, Py are spatially nearest neighbors or Py, Py are.

Proof: Asin the proof of Lemma 6, P;, P,, Py, P; form a loop of spatially nearest
neighbor grid nodes. If the BOND [Py, P,] is the edge of a cell then one side of the
loop is strictly spatially nearest neighbor, and the proof follows that of Lemma 6. If
the BOND [Py, P, is the diagonal of a cell, see the right frame of Fig. 5. Fig. 6 shows
the only case in which neither P, P, nor P, P; are spatially nearest neighbors.

The two circles contain the possible ranges of P, and P, respectively after the
point-shift algorithm at the time ¢,, and propagation only at the time ¢,,,1. A, B, C,
D, E. F, G, H are the midpoints on the cell edges starting at P; and P,. In order
for [P3, P,] to be an interface BOND as described in the proposition at ¢, after the
point-shift algorithm, an INTERFACE segment ~ at time £, before the point-shift
algorithm has to start from EUC’—D, pass the circle centered at P, then pass the
circle centered at P,, and end up in WUG—H Therefore « has to intersect the
edges of some cells and cause the grid nodes of the cells to be shifted on 7 between
POINTs P; and P;. (See Lemma 2.) This fact violates the assumption that P; and
Py are adjacent on the INTERFACE. The proof is complete.

Proof of Proposition 2 The INTERFACFE, in mesh index space, traces a polyg-
onal path joining nearest neighbor mesh nodes, and "', as a segment of this INTER-
FACE, does the same. The two extreme sets, of POINTS spatially nearest neighbor
to P; but not to P, and the reverse set, while being spatially nearest neighbor to
one of P, or P, are not adjacent. See Fig. 5. Thus "' cannot pass from the first
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P2

Figure 6: A configuration in which P;, P, and P,, P53 are not spatially nearest neigh-
bors.

set to the last without passing through the intermediate set. This proves the final
statement of the Proposition.

The rest of the Proposition is an direct consequence of Lemma 4 provided that
we can eliminate the following twisted nearest neighbor possibility: there are two
POINTs Ps, Py on b""', [P3, P;] having the same orientation with [P}, %], so that
Pj is a spatially nearest neighbor to P, but not with P; and P, is a spatially nearest
neighbor to P; but not with ;. In fact if it is true, according to Lemma 4, P3 must
be a strictly spatially nearest neighbor to P, and P, be a strictly spatially nearest
neighbor to P;. Let us consider the case that B is a diagonal of a cell, the other
case being similar and simpler. Drawing a circle of radius (1 — ¢)Az (0 < e << 1)
centered at the original positions of P, and P, say Oy, Oy respectively, we find all
the possible positions of M, M, respectively. See Fig. 7.

Let Ny, Ny denote the nodes which are strictly spatially nearest neighbors to P;
but not with P, and N3, Ny denote the nodes which are strictly spatially nearest
neighbors to P, but not with P;. Note that before the point shift algorithm at ¢, 4,
the propagation image of the BOND B is a straight line which has to start from area
Oy, visit the Az /2 neighborhood of N3 or Ny (in order for it to be shifted to b"*'),
then visit the Az/2 neighborhood of N; or Ny, and finally end up in Oy, which is
impossible. The proof is complete.
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Figure 7: Nodes strictly spatially nearest neighbor to P; but not P, and the converse.

Lemma 8 Let Py, Py be two (not necessarily adjacent) time level t,, POINTSs which
are propagated and shifted to an interface BOND defined by adjacent time level t, 1
POINTs P; and Py. Assume that [Py, Py] and [Ps, Py| have the same orientation
relative to the INTERFACE. Then if Ps is spatially nearest neighbor with Py but not
Py, Py can not have the reverse property of being spatially nearest neighbor with Py
but not Ps.

Proof: We only consider the case that [Ps, P,] is the diagonal of cell, say C, after
point-shifted algorithm. The other case that [Ps, Py is the edge of a cell is similar
and simpler. There are 5 grid nodes which are spatially nearest neighbor with P
but not with P;. Also there are 5 nodes which are spatially nearest neighbor with Py
but not with P;. See Fig. 8. By drawing a circle of radius (1 — ¢)Az (0 < e << 1)
centered at each of these 10 nodes we find all the possible positions of each these
nodes after point-shift algorithm at time level ¢,, and after propagation at time level
tni1. Let the union of the first 5 circles be Oy and the union of the second 5 circles
be Oy. A, B, C, D, E, F, G, H are the midpoints on the respective cell edges which
limits the allowed time level ¢, shifting of P; and Pj. In order for the INTERFACE
at the time ¢, before the point-shift algorithm to violate the above proposition the
INTERFACE has to start from AB|JCD, visit Oy, then O, and finally end up in
EF|JGH. The t,, propagated INTERFACE will inevitablely intersect edges and
cause grid nodes other than P; and P, to be shifted to the INTERFACE between
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Figure 8: Nodes spatially nearest neighbor with one of P;, P, but not the other.

them after the point-shift algorithm. (See Lemma 2.) This is a contradictory to the
assumption that P; and P, are adjacent on the INTERFACE. The proof is complete.
Proof of Proposition 3 This is a corollary of Lemmas 5, 7 and 8.
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