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Abstract. High resolution capturing schemes generally speaking can take advantage of the
piece-wise smooth property of the weak solutions of conservation laws and achieve high order ac-
curacy wherever the solution is smooth. Thus In 1D, the positions of smeared discontinuities may
supposedly be recovered before they interact with each other using the subcell resolution methods
(Harten [9]). An interesting phenomenon is that after their interaction, the recovered positions of
smeared discontinuities degenerate to first order. We study this phenomena in an ideal model and
give an explanation.
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1. Coupled First Order Shift of Conservative Quantities. High resolu-
tion capturing schemes take advantage of the piece-wise smooth property of the weak
solutions of conservation laws and achieve high order accuracy wherever the solution
is smooth. However there are situations in which most high order capturing schemes
fail to perform well. In [2], startup errors brought to the numerical solution are in-
vestigated. In [15, 16], various difficulties for Godunov type schemes are discussed for
computation in elastic-plastic solids. Here we use a few examples to demonstrate some
interesting phenomena which could be important for the improvement of capturing
schemes.

In the following example we use a 2nd order TVD scheme [8] to compute a Rie-
mann problem for Euler equation for ideal gas with γ = 1.4. Initially the density,
velocity and pressure are 1, 0, 1 respectively in (0, 7); 1

2
, 0, 10 respectively in (7, 14).

With CFL factor equal to 0.95, we measure at the final time T = 1.4 the positions of
the smeared shock wave and contact using the subcell resolution method (Harten [9])
based on the conservation of mass, see Table 1.1. It is clear from the Table that both
the shock and contact positions are only first order accurate.

We also compute the errors for the uniform states away from the shock wave
and the contact. They all have second order accuracy, which means the first order
shift of conservatived quantities is caused by the coupling between the captured shock
and contact. This phenomenon can also happen when two captured discontinuities
interact with each other; this will be demonstrated in the next example. When a
capturing scheme is used along with interface tracking methods, the accuracy of the
captured discontinuity position has a direct connection with the order of accuracy
of the tracked interface position because it affects the timing of wave collision and
may also affect the accuracy in the smooth parts of the weak solution with non-zero
space and time gradients. Therefore modeling this type of interaction seems to be a
problem of fundamental importance.

In Table 1.2, there is also the phenomenon of first order shift of conservative
quantities when a captured shock hitting a captured contact. Initially the density,
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N shock position error order contact position error order

200 0.028 - 0.016 -
400 0.013 1.1 0.0094 0.77
800 0.0064 1.0 0.0047 1.0
1600 0.0032 1.0 0.0024 0.97

Table 1.1

Shock and contact position errors under mesh refinement.

N shock position error order

200 0.016 -
400 0.0086 0.90
800 0.0045 0.93
1600 0.0022 1.0
3200 0.0011 1.0

Table 1.2

Reflecting shock position error after interaction with a contact, computed by 2nd order TVD

capturing scheme.

velocity and pressure are

3.0905645962484498, 1.8445453576892512, 6.0298254275965366

on (0, 8); 1, 0, 1 on (8, 10); 2, 0, 1 on (10, 16). The right going shock wave initially at
x = 8 will meet the contact at x = 10 and split into reflecting and transmitting shock
waves. It is also computed by the second order TVD scheme from time T = 0 to
time T = 3. The reflecting shock wave position is measured using subcell resolution
method.

We also measure the captured shock wave position before interacting with the
contact to obtain close to second order accuracy.

Is this kind of first order shift of conservative quantities avoidable among the
existing capturing methods? Can we develop a high resolution capturing scheme
that is at lea st second order in the shift of conservative quantities after captured
discontinuities interact? We will try to give a hint of what is happening in the last
section.

2. Its Relation to Conservative and Non-Conservative Interface Track-

ing for Gas Dynamics. The conservative quantity loss across the interface when
using a non-conservative tracking methods, e.g. non-conservative front tracking is
usually small in 1D when the interface is not interacting with shock waves. But non-
conservative and conservative front tracking methods can still be characteristically
distinguished in numerical experiments. In [6], we conduct a test for the 1D Euler
equation for ideal gas, with γ = 1.4. The computational domain is [0, 4] with flow-
through boundary conditions. At time T = 0 there is a central rarefaction wave in
(1, 2) and a left going shock at 3. The left going shock runs into the rarefaction wave
at the final time T = 1. The initial states are as follows: the density, pressure, velocity
are 2.0, 0.5,−1.0 respectively in (0, 1); the pressure is 1.5 in (2, 3); the velocity is −1.5
in (3, 4). The interior capturing scheme is the second order MUSCL scheme [17, 18, 3]
with the shock wave tracked conservatively in one case and non-conservatively in the
other. The comparative shock position errors are shown in Table 2.1. This demon-
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non-conserv. tracked conserv. tracked

N shock position error order shock position error order

100 1.52e-5 - 1.26e-4 -
200 5.19e-6 1.55 4.44e-5 1.50
400 -1.80e-6 1.53 1.72e-5 1.37
800 -6.55e-6 - 4.80e-6 1.84
1600 -3.85e-6 0.767 1.26e-6 1.93
3200 -1.92e-6 1.00 3.16e-7 2.00

Table 2.1

Comparative shock position errors for conservative and non-conservative front tracking when

interacting with a captured rarefaction wave computed from an initial rarefaction wave fan.

non-conserv. tracked conserv. tracked

N shock position error order shock position error order

100 -4.20e-6 - 2.90e-4 -
200 -4.58e-6 - 9.15e-5 1.66
400 -2.54e-5 - 1.71e-5 2.42
800 -2.29e-5 - 2.85e-6 2.58
1600 -1.12e-5 1.03 9.70e-6 1.55
3200 -5.38e-6 1.06 2.00e-7 2.28

Table 2.2

Comparative shock position errors for conservative and non-conservative front tracking when

interacting with a captured rarefaction wave computed from an initial smooth rarefaction wave fan.

strates that certain second order information is kept during the interaction of the
conservatively tracked shock wave and the rarefaction wave. It is also demonstrated
in [6] that if the edges of the initial rarefaction wave is smoothed out, the conserva-
tively tracked shock position will be improved while the non-conservatively tracked
one is still first order, see Table 2.2. The next example shows that a conservatively
tracked contact will keep its accuracy close to second order when interacting with a
captured (by TVD scheme) rarefaction wave.

Initially the density, velocity and pressure are

0.3483732641877501,−1.8445453576892512, 6.0298254275965366

in (0, 4); 1

2
, 0, 10 in (6, 8); and 1, 0, 10 in (8, 16). The initial “rarefaction wave” span-

ning (4, 6) is smoothed out without any sharp corner. Table 2.3 shows the contact
position error at the final time T = 0.8 when th e contact runs into the rarefaction
wave.

But unfortunately this higher order information is lost if we compute the rar-
efaction wave from an initial discontinuity instead of an initial rarefaction fan. This
seems to be related to the startup error [2]. In fact if we change the previous initial
data to density, velocity and pressure being

0.3483732641877501,−1.8445453576892512, 6.0298254275965366

in (0, 4); 1

2
, 0, 10 in (4, 8); 1, 0, 10 in (8, 16), and compute the conservatively tracked

contact position at final time T = 1 (so that the contact runs into rarefaction wave),
we have essentially first order result in Table 2.4 .
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N contact position error order

200 1.5e-04 -
400 1.7e-05 3.1
800 7.3e-06 1.2
1600 2.3e-06 1.7
3200 2.1e-07 3.5

Table 2.3

Conservatively tracked contact position errors when interacting with a smooth rarefaction wave.

N contact position error order

200 0.0077 -
400 0.0039 0.98
800 0.0019 1.0
1600 8.7470e-04 1.1
3200 3.7582e-04 1.2

Table 2.4

Conservatively tracked contact position errors when interacting with a rarefaction wave com-

puted from an initial discontinuity.

This further emphasizes the close connection between the front tracking method
and the high resolution Godunov type interior capturing scheme. In fact they share
a highly successful principle, that is, to squeeze as much as possible the high order
information from the smooth part of the solution and leave the residue, the disconti-
nuities separating them to the Riemann solvers. That is why we are not too surprised
to find out that when a captured shock wave with close to 2nd order accurate position
(measured with subcell resolution method) interacts with the conservatively tracked
contact, the accuracy of the contact position degenerates to only first order. Because
all the high order informations about the shock and the tracked contact are all there
before the interaction, we are really curious on what happens during the interaction.

3. An Explanation. Consider a piecewise smooth function u1

u1(x) =







2, x < 3.5
1, 3.5 ≤ x < 6.5
3, 6.5 ≤ x ≤ 10.

(3.1)

Let {xi = i : i = 0, 1, · · · , 10} be a partition on [0, 10] and let U1(x) be a finite volume
approximation of u1(x). Ideally, we let U1(x) be the cell average 1

xi+1−xi

∫

xi+1

xi

u1(s)ds

for x ∈ (xi, xi+1). See Fig. 3. Notice that in this example the positions of discontinu-
ities of u1(x) can be calculated exactly from its approximation U1(x) by the subcell
resolution method (Harten [9]).

Suppose the two discontinuities of u1(x) are two approaching shocks. When they
all get into one cell, we have a function u2(x) defined as

u2(x) =







2, x < 4.25
1, 4.25 ≤ x < 4.75
3, 4.75 ≤ x ≤ 10.

(3.2)

Denote the piecewise cell average of u2(x) to be U2(x). See Fig. 3.2. Clearly,
the cell average of u2(x) in cell (4, 5) can not uniquely determine the positions of
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Fig. 3.1. Discontinuous function u1, “—”, and its piecewise average.
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Fig. 3.2. Discontinuous function u2, “—”, and its piecewise average.
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the two discontinuities of u2(x). In fact, there are infinitely many choices of the
two discontinuity positions in cell (4, 5) which give the same cell average in (4, 5).
Therefore the order of accuracy of discontinuity positions degenerate to 1 for U2(x)
and any high order information for discontinuity positions of u2(x) is completely lost
in U2(x). If a numerical evolution scheme starts with U2(x) as its initial value we can
not expect it to achieve more than 1st order accuracy in recovering the discontinuity
positions and even in the non-trivial smooth region between the two discontinuities.
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