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METHODS FOR ADVECTION-DIFFUSION EQUATIONS

YINGJIE LIU*, RANDOLPH E. BANK', TODD F. DUPONT#, SONIA GARCIA§, AND
RAFAEL F. SANTOSY

Abstract. A mixed method allowing a general class of mesh movements is proposed for an
advection-diffusion equation in either conservative or non-conservative form. Various symmetric
error estimates are derived for the method under certain conditions. In one space dimension (1-
d), optimal order L? convergence and superconvergence are proved as a corollary of the symmetric
estimates.
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1. Introduction. Moving mesh finite element methods have been widely stud-
ied; in [9, 8] methods based on Galerkin formulations were given. In [5, 2] error analysis
was provided for related classes of moving mesh finite element methods which allow
piece-wise time continuous mesh movements. In this work, we examine moving mesh
methods for mixed methods that incorporate some of the ideas in [4], where a proce-
dure for including characteristics within finite element methods for advection-diffusion
equations was proposed.

A symmetric error estimate is, to within a constant, a best approximation result.
That is, if the error can be made small in the given norm then it is small in that norm.
Somewhat more precisely, there is a norm || - ||, and a constant, C, such that

Jlerror|| < C||best approximation error]|.

Dupont [5], Bank and Santos [2], Dupont and Liu [6], and Section 5 of this work
establish bounds of this type. In [6] and this paper, the constant C' does not increase
as the advective term increases in size, provided the mesh movement approximates
the advective term sufficiently well. These results thus make it clear that the mesh
movement is actually modeling the advection. Also, the norms in Section 5 involve the
convective derivative instead of the partial with respect to time, and as Douglas and
Russel pointed out in [3], for advection dominated problems the convective derivative
will typically be much smoother, and therefore easier to approximate well. While
symmetric error estimates for parabolic equations have a certain attractiveness in the
simplicity of the statement that they make, it is sometimes hard to see the precise
meaning of the result because the norms involved are made up of several parts. We
exploit the idea of [6] to weaken some of these parts to “concentrate” the norm on
certain terms.
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Characteristics-type mixed methods have been studied in several papers, see
e.g. Yang [11] and Arbogast and Wheeler [1], but the analytical understanding of
mixed methods in combination with moving meshes is far from complete. Unlike
Galerkin methods using conforming finite element spaces, moving mesh methods using
mixed formulations and discontinuous approximation spaces can develop singularities
in the time derivative at the edges between elements. Therefore it is critical to use di-
rectional time derivatives along the mesh movement direction throughout the analysis.
In this paper, we first introduce our method and prove our symmetric error estimate.
Next, an optimal order L? error estimate and a superconvergence result are proved for
one space dimension as a corollary of the symmetric error estimate. The error bound
is made as local as possible, which along with the error constant C, fully describes the
effectiveness of a given mesh movement. In particular, while accuracy in aligning the
mesh movement with the characteristics may be difficult in some circumstances, it
may not be necessary as long as the difference between the advection velocity and the
velocity of mesh movement remains bounded. Furthermore, the locality in the error
bound shows that a second factor motivating mesh movement should be to provide a
finer mesh where the solution has larger second order (or above) derivatives.

The remainder of this paper is organized as follows. In Section 2, we discuss
the advection-diffusion equation in conservative form, introduce several notations,
and formulate the mixed method for general mesh movements. In Section 3, we
introduce a pseudo inverse operator “A” of “div”, which plays a critical role in the
symmetric error analysis in Section 5. In Section 4 we develop the basic properties
of the directional derivative “-2-” which are important to the energy type analysis.
Optimal order error bounds are proved in Section 6. In Section 7, we consider a
mixed method for an advection-diffusion equation in non-conservative form, allowing
general mesh movements. Symmetric error analysis and 1-d applications are derived
in a manner that parallels the earlier analysis.

2. Model Problem and Mixed Method. Consider the following advection-
diffusion model problem on @ = Q x (0,7),

Ou—V - (aVu +bu) = f, on @,
u=0, on 02 x (0,T), (2.1)
u = U, fort =0,

where a(z), b(z), and f(z,t) are smooth and bounded and a; > a(x) > a¢ > 0 for
some constants ag,a;. 2 is a bounded domain in R™. For simplicity, we assume (Q is
a fixed polyhedron.

We use | - |s to denote the H*(2) norm. When s = 0, we usually use | - |. If
we use domains other than Q we will use | - |g+(q,) or |- |z2(;)- The norm for the
dual space of Hj(Q) is denoted | - |-1, and |¢]Lr(0,1;x) denotes the LP(0,T) norm of
|€(-, )| x- We will use (-,-) as the inner product on L?(Q) and on (L?(2))", and rely
on context to show which.

We will study methods that approximate the solution u of (2.1) on a moving
mesh which is given as a time-dependent image of a fixed reference mesh. Suppose
that D = UD; is a fixed polyhedron where D;’s are closed sets with nonvoid disjoint
interiors. We need few assumptions on the D;’s for much of the argument, but to
keep the discussion simple, we suppose that each D; is a simplex and that they form
a tessellation of D. Further, we suppose that there is a continuous mapping G from
D x [0,T] onto Q x [0,T] such that:



1. for each ¢, G(-,t) is a one-to-one piecewise linear mapping (with respect to
{D;}) of D onto

2. G is continuously differentiable on each D;; and

3. 00 = G(0D,t).
Let Q;(t) = G(D;,t), hi(t) be the diameter of Q;(¢) and h(t) = max;{h;(t)}. Then
Q;(t) is also a simplex and {Q;(¢)} becomes the moving partition of Q. It is sometimes
convenient to think of this moving mesh as being generated by a mapping of Q onto
itself. Let G~! denote the inverse of G as a map of D onto Q; so this function is
defined on (). Let G; be the partial of G with respect to t. The finite element mesh is
advected with a flow that is given by

i(t) = Gi(G7 (1), 1).

Given the assumptions on G, the function  is a continuous piecewise linear function
over the partition {Q;} of . Let V}, be a finite dimensional subspace of L?(D). Then
the finite element space on (2 is defined by

Vi(t) = {(z,1) : §(G(-,1), 1) € Vi}.

We will take Hy(t) to be a finite dimensional subspace of H (div, Q) so that div Hy, =
V}, for any ¢. In particular, we will take V}, to be the space of discontinuous polynomials
of total degree at most m and the Hj to be the Raviart-Thomas flux space. Let P,
denote the L? projection onto Vj,. Let II; be the linear operator H(div,Q) — Hj
satisfying (div (W —II,W),r) = 0,Vr € V}, and div I, = P,div as defined by Raviart
and Thomas in [10].

Let h(z,t) denote the function that has the value h;(t) on each Q;(¢). For a
function ¢ such that its restriction to ; is in H*(£;), let

lelzr = lelte .-
i

We denote a particular directional derivative, DF/Dt, as follows:

DF(xz,t)  OF(x,t) .
Dt - ot +z -V F(x,t).

Note that if F(-,t) € V,(t) is differentiable on each §; then DF/Dt is also in V.
Even though it might seem that both 0F/dt and V,F are singular on the boundaries
09);, the directions involved in DF'/Dt never cross the boundary of any Q.

The first mixed method we consider uses a mesh movement induced flux across
subdomain boundaries. Let o = —(aVu + bu + zu) and « = 1/a, 8 = b/a. The exact
solution u satisfies

Du

i +dive + (V- i)u=f.

This leads to the following mixed formulation,

(ao + (B + az)u, X) — (u,div X) = 0, VX € H(div,Q),

<% +dive + (V -a'c)u,r) =(f,7), Vr € L*(Q). 22)

Dt
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We define the mixed approximation to be functions uy, : [0,7] = V3 and oy, : [0,T] —
Hy, such that up(0) = Ppu(0) and

(aoy + (B + ai)up, X) — (up,div X) =0, VX € H,
Duy,

(—+dz’vah+(v.:t)uh,r) =(f,r), Vr € V. (2:3)

Dt

Note that this method is locally conservative, because the rate of change of the
integral of u over each subdomain is given by the integral around the boundary of
the normal component of ¢, and the normal component of ¢ is continuous across
subdomain boundaries. (If this is less than clear, please see the proof of Lemma 7.)

In proving the symmetric error estimates we don’t need specific approximation
properties, but we will need such properties in order to obtain a priori error bounds
based on the mesh size and the smoothness of the solution u. We summarize these
additional conditions here.

CoNDITION 1 (Approximation). There exists a constant Cy such that for any
w € H*1(Q), s1 >0, and any t € [0,T],

lw = Prw| < Cr[a™ ™m0 e
and for any W € (H*2(Q))", s2 > 1, and any t € [0,T],
[W = W[ < Coh™ 423 e,

where my = m + 1 in I-d and m; = m in higher space dimension. This condition
holds for for the Raviart-Thomas spaces, where C; depends on m and on a bound for
hi/ Bi, where h; is the diameter of the largest ball in R™ contained in ;.

CONDITION 2 (Stability of II;). There exists a constant Co such that any for
any W € (HY(Q))", and any t € [0,T],

MW | < Co|W -

If Condition 1 holds then C3 can be taken to be 1+ C}h. But this condition is strictly
weaker than Condition 1; it allows controlled degeneracy in the elements as the mesh
size decreases.

ConDITION 3 (H? Regularity). The domain §) is regular enough such that there
exists a C3 such that, for any £ € L?(Q), the boundary value problem

Ag =&, in Q,
g=¢& (2.4)
g=20, on 012,

has a unique solution and |g|2 < Cs|¢].

3. A Pseudo-Inverse of div. In this section we define and explore the proper-
ties of a smoothing mapping that appears naturally in the symmetric error estimates.
Let A: L?(2) — Hy, be the pseudoinverse of div in the sense that

¢ —div(Ap) LV,

|Ag| is minimal.
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Note that A(p) = A(Pryp), thus we can factor A as Ay, Py, where Ay, is A restricted
to V},. Note that this factorization gives that A* maps Hj, into V},. Let Hy = O ® O+
where O = {X € Hj, : div X = 0}, and O+ is its orthogonal complement with respect
to the (L?(2))" inner product. Then div is a one-to-one mapping from O+ onto Vj,
and Ay, is its inverse. In the case of 1-d with m = 0 the operator A can be explicitly
described: Ay is the piecewise linear interpolant of a constant plus the integral of .
The following result shows that in more general situations A behaves as a smoothing
operator.

THEOREM 4. If Conditions 1 and 3 hold, then there is a C = C(Cy,C3) such
that for any £ € L*(Q),

1Ag] < C{RlE] + 1€l -1},
|48 < C{AIPrg| + | Puél-1}-

Proof. Let g be the solution of (2.4) and set W = Vg. Take p € Hy, and v € V},
to the the mixed method approximation of W and g:

{ (p, X) + (v,div X) =0, VX € Hy, (3.1)

(div p,1) = (1), Vr e V4.

We want to show that p = A¢. In fact, the second equation of (3.1) implies div p = Ppé
and the first one implies (p, X) = 0,VX € O, which in turn implies that | p| is minimal
among all elements in Hy, whose divergence is Pr€.

Next we need an approximation result for mixed methods (see e.g. [7]) to see that

1AE)* = (p, p)
=p,p=W)+(p,W)
< [pl{Chlgl> + W]}
< JAEH{CR|E] + W]}

(3.2)

It follows from (2.4) that
W] =1Vl < ClE]-1-

From this and (3.2) the first result of this theorem follows. The second follows since
A = APp¢. O

Note that even if § fails to have the assumed H ?-regularity, the result may still be
proved in some cases. Suppose that Q can be expanded to  which has H2-regularity
and the function spaces can be extended to Q with the approximation properties still
holding. Then extending ¢ to be zero on Q — Q and a slight modification of the above
proof gives the conclusions of the theorem. For example, if 2 were a L-shaped region
in two space dimensions, H2-regularity would fail, but the extension to a square might
be possible.

On Hj, the operator A div does not increase the L2-norm. Suppose that p € Hy,
and let ¢ = A divp. Then divp — divy L Vi. Hence ¢ = p + z, where z € O.
Because |1| is taken to be minimal and z = 0 is possible, we see that

|4 div p| = [4] < pl- (3.3)
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In 1-d the choice of discontinuous piecewise polynomial spaces allows a more local
version of Theorem 4. In fact, let @ = (zo,2zn) and Q; = (x;—1,x;), then A& =
ffo Pp&(s)ds + C.

THEOREM 5. If Condition 2 holds, then there is a C such that for any £ € L*(Q),

14€] < CIEl.-

Proof. Take p € Hj, and v € V}, to be defined by (3.1); so we know that A& = p.
From (3.1) with x = A€ and r = v we see that

|4€* = (&, v) < €l vl

Let B be a cube that contains {2 and take ¢ be the extension of v to B by
zero outside ). Take g € H3(B) such that, on B, Ag = ¢. Then, because the
cube has H? regularity for the Laplacian, we see that Vg is bounded in (H'(B))? by
Clelrzs) = C|v|- Note that

[vI? = (v, divVg) = (v,divIl,Vg) = (AE, T, V).

The operator IIj, is bounded as a map of H' into L? by Condition 2. Thus it follows
that

IvI* < [A¢] A Vg| < ClAE] lgl> < CAEN V]

The two displayed inequalities then give the desired result. O

4. Properties of . From the definition of directional derivative we have the
following basic relatlons Wthh we use later in energy-type arguments.
LEMMA 6.

d|det(VsG(s,1))|/0t

Va & = = et (v,0)|

Proof. Take Dy C D to be an arbitrary small ball and let Q¢ (t) = G(Do,t). Then,
with n as the outward normal to g,

2/ da::/ T -ndo = Vg - &dx.
Ot Jao(t) 890 (1) Q(t)

On the other hand,

9 o
At Jou dr = 6t/ |det(VsG(s,t))|ds —/ 571det(V.G (s, 1))lds

:/ 0|det(V4G(s, 1))|/t
Qo (t) |det(VsG)| '

The result follows from the arbitrary choice of Dgy. O

We will say that a function £ on @ is piecewise C! if when it is pulled back by G
to D¢ x (0,T) it can be extended to be C* on D; x [0,T]. A function that is the limit
in H'(D; x [0,T)) of piecewise C! functions will be called piecewise smooth on Q. We
will usually operate formally on piecewise smooth functions without going through
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the step of approximating them by smooth functions and taking limits, since this is
routine.
LEMMA 7. Suppose that £, is piecewise smooth on @, then with R = Q or Q;,

[ eto= [ oars [ v s

Proof. It suffices to show the result for ;. Note that

d d
E/n,- &dr = E/Di &|det(VG)|ds

_ [ % 9
_/D,- 8t|det(Vg)|ds+/Di§6t|det(vg)|ds

B LR )

Using Lemma 6, the proof is complete. O
% also has the following properties for any piecewise smooth functions &, #:

D, . D¢ .Dn
D&M =015, T4

D_, _ D¢ 7

Evzf — vxD_t - (me) sz;

where V£ is a column vector and V% is the Jacobian of & with respect to x.
It easily follows from this and Lemma 7 that

(Be-€) = 516l - 56607, (@)

We denote the pseudo derivative of £ by

Dig= 28+ (V)6

and now show that D; commutes with Pj.
LEMMA 8. For function £ that is piecewise smooth on Q PnD& = D Pré.
Proof. Let ¢ = Pp&, then (£ —¢,r) = 0 for any r € V. Given ty € [0,T1], let ¢(x)
be any function in Vj(to). Let r(z,t) = ¢(G(G1(z,t),t0)). Then r(z,to) = ¢(z),
r(-,t) € Vp(t) and g—: =0 for any ¢ € [0,T]. Thus at o,

d
0= (e—v.m)
D Dr .
— (e=w0) + (€= 0. 20) + (€= 6.V 2)9).
That is,

0= (Di(§ = ¥),8) = (PuDi& — DiPré, ¢).

The proof is completed by observing D¢Pré € V. O
7



5. Symmetric Error Estimates. In this section, we prove four symmetric
error estimates.
Let F}, be a linear operator V3 (t) — Hp(t) such that for any vy € Vi (),

(aFy(vg) + (B + ad)vp, X) — (vg,div X) =0, VX € Hy,.

Thus F}, is the flux operator associated with the space V},. Using Fj, and the norms
IG5 )l and I, )« defined by

Dn 2

10,91 = Il o 7200 + [ A

- 2
L2(0T:12(2) + |A(div )| 22(0,7:L2(02))

. Dn 2
2 — P2 HA—
I, ) = 1Panl o 0,120 + | Ay La(0T:L2(q)

+ |A(div ¢)||2L2(0,T:L2(Q))7

we have the following pair of symmetric error estimates.
THEOREM 9. Suppose Condition 2 holds, and there exist constants ci,co such
that for all (z,t) € Q,

Ve 2| <ec1, and |8+ ai| <eco.

Then there ezists a constant C > 0, depending only on Ca,c1,ca, T, the bounds of
coefficient a, and Q, such that for any piecewise smooth function vy, with vy (-,t) €

Vh (t) ’

I(w = up, 0 = o)l < Cli(u = vn, 0 = Fi(vn))]l;
I(w = up,0 = o)« < Cll(w = v, 0 = Fh(vn))]l

Proof. Take vj, to be a piecewise C' function such that vy (-,t) € V(). With
S, = Fy(vy), adopt the notation

V = up — Up, p=0n— Sk,
n=u—uvp, =0 —8p.

Subtracting (2.2) from (2.3), we obtain the following orthogonalities:

(ap+ (B + ai)v, X) — (v,div X) =0, VX € Hy,
Dv . . _(Dn . . (5.1)
(D_t +divp + (V-w)u,r) = (D_t + divy + (V-x)n,r) , Vr € V4.

With X = p and r = v, these and (4.1) give

1d .
5z II° + (ap + (B +ad)v,p)

— (B divww) 4 (i) - g [ AT o

- (de (%’Z + dmp) ,y) + ((V-:i:)ni)l/) - % /Q AV i)z (5.2)
= (ap + (B + az)v, A (% + div d})) + ((V - 2)n,v)
1

—5/91/2(V-a':)dm.



Therefore

d, o ) )
vl + < + kR
Sl +alpl? < © {IIVII HA (LDt div w)

+ ||n||2} : (5-3)

where ay = 1/ay. Tt follows from Gronwall’s inequality that

112 0,722 (02)) F 1012 (0,22 (02)) < CLIVO) + N (m, )17 }-

The choice of up(0) = Pru(0) shows |v(0)] < |n(0)] so the |#(0)|-term is bounded by
ll(m,4)]|- Combining these results with (3.3) we see that

||V||2L°°(0,T:L2(Q)) + | A div P||2L2(0,T:L2(Q)) < Clim, I
Note that v = Ppv and ((V - )n,v) = (V - &)Pyn, v), since V - & is constant on each

Q; and V}, has no continuity between subdomains. Therefore we can replace |v| by
| Prv|, |n| by |Prn| in (5.3) to obtain

"Ph’/"%m(O,T:L?(Q)) + | A div P||i2(0,T:L2(Q)) < Cli(m, )3

It remains to estimate |A(2%)|?. Using (5.1) and Theorem 5

Dv  Dv Dv |, Dv
(AE’AE) = (D_t’A AD_t)

Dv
A*A—
(dw p+ (V- -z, Dt )

Dn Dv
+ (D—t+dww+( )n,A*ADt> (54)

- (A divp + A(V -:i:)u,A%’;)
(A + A divi + A(V - m)n,A%Z)
<CHA H{|Adwp||+||y||+HA H+||Adw¢||+||n||}

Therefore we have

Dv 2 )
H Dt L2(0 TLz(Q) C|||(n, )||| .
Since
. Dl/ D Dy
(A(v'x)n’AD_t) (AP"(V w)n’ADt) (A(V m)P’””Am)
we also have
Dy 2
A— 2
H Dt L2(0 T: L2(Q)) Cl" (77 ¢)|||
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Hence,

(@, )l < Cll(w = v, 0 = Sh)l
I, p)ll« < Cll(u = vh, 0 = Sh)ll«-

Applying the triangle inequality completes the proof. O
Next we define two additional norms ||(-,-)||p,, |(-;-)lp; by

I, D, = Inliw 0,120y + AP 72 (0,7 1202y + 1A(div )| T2 (0,7 12(0)) 5
I ) Ds = 1Panl oo, 1.12(0)) + [ADN 20,7120 + 1Adiv )| 720 7.12(02))

and use them to get the following pair of symmetric error estimates.
THEOREM 10. Suppose there exist constants ¢y, ce > 0 such that

Ve -i<e and |f+az|<c

for all (z,t) € Q. Then there exists a constant C > 0, depending only on c1,ca, T, the
bounds of coefficient a, and Q, such that, for any piecewise smooth function v, with

vp(-,t) € Vi(t),

I(w = un,0 = on)llp, < Cli(w = vn,0 = Fi(vr))llp,
I(w = un,0 = on)llp; < Cll(w = vn,0 = Fr(va))llp; -

Proof. We slightly modify the proof of Theorem 9. The inequality (5.2) becomes

1d

2 .
S + (ap+ (5 + by, p)

= (D + div,v) — %/ VAV - &)dx
Q

= (div A(Dyn + divp),v) — / (V- i)dx

Therefore

%lll/ll2 +alpl® < C{Iv|* + |A(Dun + div ) [*}.
It then follows from Gronwall’s inequality and (3.3) that
||V||2L°o(0,T:L2(Q)) + |A div P||%2(0,T:L2(Q)) < C|||(77:¢)|||?3“
and, since Ppv = v,
| PavF oo 0,7 1200y + 1A div plF2(0 7.12(62)) < Cl 0, 0D -
It remains to estimate |AD;v|?.

(ADyv, ADw) = (Dyv, A*ADv)
= —(div p, A*ADw) — (Dyn + divp, A*ADv)
= —(Adivp, ADw) — (ADyny + A div ¢, AD)
< ClADw|{||A div p| + |ADin| + |A div ]},

10
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Therefore

|AD w1720 o120y < CUO)I” + N, 9)D, ),

and

|ADV[72(0 7.12(0)) < CUPO)I* + I, ¥)ID;)-

As before, the triangle inequality completes the proof. O
Note that Theorem 10 uses A but does not rely on Theorem 5; hence it does not
require Condition 2 to hold.

6. Optimal Order and Superconvergent L?(2) Bounds in One Space
Dimension. In 1-d, Q is an interval. Let cs be a constant satisfying ¢4 > 2 (ao + %),
where & = b + &| Lo (jo,7],L())- Assume a,b are sufficiently regular such that for
any g € L?(Q), the elliptic equation

{ —0;(ad,w) + (b + )0, w + caw = g,in Q, 6.1)

'lU|BQ = 0;

has a unique solution w satisfying |w|2 < C|g|.

We have the following optimal order L?(f2) error estimate.

THEOREM 11. Suppose Condition 1 holds, and there exist constants ci1,ca,cCs
such that, for any t € [0,T], |02 oo, |0zbloc < €15 |8 + @)oo, ||D2t(,8 + a)| o < o5

[0z o, ||%‘;‘||OQ < c3; Then there exists a constant C, depending on Ci,c1,ca,c3, Q,

T, and the bounds of coefficient a such that, for h sufficiently small

min min — Du
|lu—up| <C {"h {m+1’s}u||Lw[0,T,£‘] + [hh {mt1.s 1}D_t"L2[0,T;£S—1]

+ ||hmin{m+2,s} hmin{m+1,s—2}

ol20,mm0) + |B? ol L2jo,r;m-1]

y Do

+||h2hmin{7TL+1,s—2 D "LQ[O,T;HS—l]} . (62)

Proof. This is an application of Theorem 10 using ||| p,. Since ||(u—un,oc—0n)| b,
dominates the term we want to bound, it suffices to show that ||(u—wvp, 0 — Fn(vr))| b,
can bounded by terms on the right- hand side of (6.2) for suitable choice of vy,.

At each time we take the elliptic projection (v, Sy) of (u,0) into Vi, x Hy to
satisfy

{ (a(Sh — o) + (B + ai)(vp — u), X) — (vp —u, 8, X) =0, VX € Hy,

(aw(sh - O') + C4(Uh bl U),T’) = O’ Vr e Vh, (63)

Notice that S, = F},(vg).

Differentiating (6.3) with respect to time, using Lemma 7 and properties of D%,
we have
D D D
—(Sh — P)— (vp, —u), X ) — [ = (on — X
(agy(S1 =) + (8 + ad) y(on = ).%) = (3 (on ~ .2, )VXEH
h>
:(El(Sh—O'),X)+(E2(’Uh—u),X),
0n o (Sh = 0) + e (on —w)r ) = (Bx(un - u).7) W e v;
S TAC Capy;Wh —u),1 | = (Eslvp —u),7), T € Vh,
(6.4)
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where

D .
B =— (D_ta + a@wa:) ,

D
Ey =— (E(ﬂ +ai) + (B + a:b)@m;'v) ,
E3 = - C46$.i'.
Here we are also using the fact that for any given to € [0,T], X(z) € Hp(to) and

r(z) € Vi(to), we can define X(x,t) = X(G(G " (x,1),t0)) € Hp(t) and F(z,t) =
r(G(G7 (z,t),t0)) € Vi(t) for any t € [0,T], so that X(z,t0) = X(z), 7(z,t0) = r(z)

and 2X = 27 =0.
Because of (6.1), using the duality lemma in [3], for any h sufficiently small, we
have
lon = Prul < C{hISk = ol + hlPhu = ull + h*|0:(Sh = 0)[}- (6.5)
From the second equation of (6.3) we have
| P10z (Sh — 0)| < Clon — Paul. (6.6)
Therefore using the triangle inequality
|02 (Sp — )| < Clvp, — Pru| + |PrnOzo — 0;0|. (6.7)
Also from the first equation of (6.3)

|Sh — Hh(7||2 < C(a(Sp —0),Sp —IIo) + C(a(c —Ipo), S, — o)
= C(vh — u,0:(Sh — po)) — C((B + a)(vh — u), Sp — o)
+ C(a(oc —po), Sy — Mpo). (6.8)

Note that

(vh — 4,05 (Sk — I40)) = (v — Pyu, P10y (Sh — 0)) < Clvp — Prul?,

therefore

1Sh = Mho|* < C{lon — Pyul® + Ju — Pyul? + o — Mho?}, 6.9)

ISk = ol* < C{llvn = Poul® + Ju = Poul? + |o — o}
Substituting into (6.5) we have
lon — Phull < C{hlu — Pyul + hllo — po| + h*| Pudzo — Oo]}. (6.10)

Using the triangle inequality

lon —u| < C{|u — Pyu| + h|o — Tyo| + h?|Prdyo — 80|} (6.11)
Substitute (6.10) into (6.9)

ISk — o] < C{|u = Pru| + |0 = Ipo| + h%|Prdso — 8,0 }. (6.12)

12



Similarly applying the duality lemmas in [3] to (6.4), noting that |E1]co, | E2|oos
| Es|oo < C, we have for h sufficiently small,

|5

[Bon- B <c s

D
Sh — D—tJH + hHPhD_tu - — ”

+h?

( Sp— )H+||sh—a||+||vh—u||} (6.13)

From the second equation of (6.4), we have

HPhaw (DtSh - —U) H < C {H Dt’l)h - Ph—u‘ + ||’Uh - Phu||}

Therefore a triangle inequality yields

(Dtsh Dt ) H

D D D
<C { Hmvh - PhEuH + |on — Paul + thazﬁa - azmaH} .

Also, from the first equation of (6.4)

D D |2 D D |2
e <cl|Zw-p = H — Pyul?
”Dt T H —C{HDtU" hpgt| +lon = Prul+
D
7B B

—H— H 2 2
= uf +] 2o~ Do + 15k~ ol + Jon ~ ul

so is |[£S, — £ 0|, Substitute these into (6.13)

D
Dyt = P H < 0 {Hlon = P+ Pu gy = ]
” Vh th C {h"vh hu|| +h th Dt’u

D
+h” D% Hh H +1Sh — ol + Jon — uf + h2HPh6 awD_tUH} (6.14)

Choosing vp, in Theorem 10 to be the solution of (6.3), and noticing that Sy, of (6.3)
is equal to Fj(vp), 0,4 is piece-wise constant and therefore commutes with Py, we
have |Pp(u — vg)| = | Pru — vp|, and

|AD:(u = vn)| = [APyDy(u — vn)|

= HA (Ph%u - %vh> + A(8y) P (u — vh)H

< CHPhEu - —vhH + C|Pru — vp|
D D
IR Bl | 2o B
= C{hHPthuD u‘ +hH T
2
Z 8, _P
+h HPhaw forid thUH + |u Rl

+ lo = Mol + h2| Padeo — Br0] },

and

|48 (0 = Fh(vn))] < C|Padro — 8254
< C{hllu — Pyu| + hlo — Myo| + h?| Padyo — 8,0l }.
13



Using approximation properties of Pj, and II; the proof of is complete. O

With more restrictions on the coefficients and the mesh movement we can have
the following superconvergence result.

THEOREM 12. Suppose the conditions of Theorem 11 hold and that there exist
constants cs, cg, ¢ > 0 such that |0y (Dt (B+az))| < c5, ||8w D7 loo < 6, |02 (2i—)—
0z%(2;+)| < eymin{h;, hip1} for all i. Then there exists a constant C, depending
on Cy,¢c1,¢2,¢3,¢5,¢6,¢7, 2, T and the bounds of coefficient a such that for any h
sufficiently small

| Pru — up| <C{ [RA™P Ty o ey + AR 1y Du ||L [0,T;H*~1]

min ,8— min +1, 2
+||hh {m+2,s—1} h2hz {m+1,s— }

ollz20,r;m5-17 + | ol 210,134 1]

min DU
+ |p2pmin{m+t,s=2} S le2o.mime

Proof. We modify slightly the proof of Theorem 11. First we apply the duality
argument in [3] to (6.3) to get

ISk — ol-1 < C{h*|82(Sh — o) + lon — Paul + hlu — Pyul}. (6.15)

Let w be a piecewise linear continuous function on {Q;} such that w(z;) = {0z&(z;—)+
0:%(z;+)}/2 for any i. Then it is easy to see that |w — 0;%|e < Ch and |w|1 < C.
From the right hand side of (6.4) we have

(Es(vp, —u),r) = (Es(vp — Pru),r),

(Ex(vp — u),X) = — (vh —u, D%(ﬁ + ) x)

— ((8,2) (v — u), (B+ ai) - X — Py((8 + az) - X))
— ((Bp)(vh, — Pyu), Po((B + az) - X))

< C{llvn — uf-1 + hllvn — u| + |vn — Prul}| X1

< C{h|u — Pyul| + |vn — Pru|}| X]1,

(Br(Sh — ), X) = — (Sh o, %‘ZX) — (Ba — w)(Sh — o), X)
— (S — 0,awX)

< C{lSh = al-1 + Al Sk = o} X]-

Following the duality lemmas in [3] again and also using (6.15) we have

H Dtvh — Ph—u ‘ < C{ |vn — Pru| + hHPhD—tu — —uH

D

—_— —_— 2 —_—
+hHDta Hh H+h||5h a||+hHPh6 athaH

+ hlu — Pyu| + h2[84(Sh — o) ||}. (6.16)

Note that |ADy(u—vp)| < C|Pyru— 5on]|+ C|Phu—vs|, and Jup — Pyu| is dom-
inated by [|(u —un, o —op)| pr, the rest of the proof is similar to that of Theorem 11.
a
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7. Another Mixed Method. Consider the non-conservative form of the equa-
tion (2.1):
Ou—V - (aVu) +b-Vu+cu=f, on @,
u=0, on 9 x (0,7, (7.1)

U = ug, fort =0,
Let 0 = aVu and a = 1/a,8 = b/a. The mixed form becomes

(ao, X) + (u,div X) =0 VX € H(div, ),

(% +div0,7‘> + (B — &) -o,r) + (cu,r) = (f,r) Vr € L*(9Q).

(7.2)

Note that with a little abuse of the notations, a, b, ¢, u, a, 3, o have been redefined.
We will keep on using the relevant notations and results from previous sections unless
specified.

The mixed method is to find up, : [0,7] = V}, and oy, : [0,T] — H}, such that

(aop, X) + (up,divX) =0 VX € Hy,

(DT? i ‘W) + (8 —#a) -on,r) + (cun,r) = (f;r) V7€ Vi

(7.3)

We define the norm ||(-, )|l by

2

Dn
2 _ .2 LDn
102 = bl om0 + | A7 | oo msncany
+[Adiv )20, 72200 + W I7200,122())- (T-4)
Let Ly, be a linear operator Vj,(t) — Hp(t) such that for any vy, € V}, (),
(aLp(vp), X) + (vp,div X) =0, VX € Hy,.

We have the following theorem whose proof is similar to that of Theorem 9.
THEOREM 13. Suppose Conditions 2 holds, and there exist constants c1,co such
that

Ve -2 <c, and |B+az|<ecy,

for all (z,t) € Q. Then there exists a constant C > 0 depending only on Cs,c¢1,¢0, T,
the bounds of coefficients a and ¢, and  such that, for any piecewise smooth function
v, with vy (-, t) € Vi (¢),

(v —up,0 —on)lle < Cll(w —vp,0 — Ly(vp))le-

Introduce another norm ||(-, )|~ by

2

Dy .

2 2 2

I, D) = 1Panlieo 0,7:12(0)) + HAE L2(0.712() + |A(div )| 12 (0,7:12(02))
+ A8 = a@) - )20, 7120 + 1Al 2(0,7:12(0))-
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We have another theorem whose proof is similar to that of Theorem 10, also using
Theorem 5.

THEOREM 14. Suppose Condition 2 holds, and there exist constants c1,ca such
that

Vet <c, and |B+az|<ecy,

for all (z,t) € Q. Then there exists a constant C > 0 depending only on Cs,c¢1,¢2, T,
the bounds of coefficients a and ¢, and Q such that, for any piecewise smooth function
vy with vp(-,t) € Vi (1),

I —un,0 = on)lle- < Cll(uw = va,0 = Li(vn)) |- -

Parallel to what was done in Section 6, we derive an optimal convergence result for
1-d in the next theorem. In particular, the L2-norm of up — P,u is super convergent.

Assume that a is sufficiently regular so that for any ¢ € L%(f2), the following
equation

{ _6z(aazw) =9, in QJ (75)

w = 0. on 01,

has a unique solution satisfying |w|s < C|g|. We have the following theorem.

THEOREM 15. Suppose Condition 1 holds, and there exist constants ¢y, cs,c3 such
that |05, | 22| < ¢1; |8 + ai| < 5 |8zc| < c3 for all (z,t) € Q. Then there exists
a constant C > 0, depending only on C1,c1,c2,c3,T, the bounds on coefficients a and
¢, and Q such that for any h sufficiently small,

lun — Prul SC{||ﬁmin{m+2’s+1}0||L°°[o,T;gs+1] + ||hhmin{erl’s}U||L2 0,T;H=+1]

+ ”hhmln{m+2 ,8} hmln{m+1 s— 1}

—||L2[o ;00 + | R ||L 2(0,T;H*]

+ [RR™EL | o ey
and
fu =l <O{ 2 gy 4 I o
n "hhmm{m+2 s—13 D = "L o1 + ||h2 pin{m-+1,s—2} Do "L ot

+ " hhmin{m—'_l’S}U||L2[07T;£5]

Proof. The proof of the first estimate is an application of Theorem 14. Since
(v — up,0 — on)|l~ dominates the term we want to bound, it suffices to show that
lI(w — v, — Ly (vr))]||e+ can be bounded by terms on the right- hand side of the first
estimate. The second estimate follows from a triangle inequality.

Consider the following elliptic projection

(Oé(Sh - U),X) + (Uh - u,@wﬂ.’) =0, VX € Hha
(0:(Sp, —0),1) =0, Vr € V.
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Notice that S, = Ly (vp).-
Differentiating (7.6) with respect to time, using Lemma 7 and properties of 2

Do
we have
D D
(0 (Sh = ). 0) + (1 on = 0),0:) .
= (E4(Sh — 0),X), " (7.7)
D
(6 Dt(Sh—O') 7“) =0, Vr € Vp,
where By = —(&a + ad, ). Using the duality lemma in [3] we have
lon = Prul < C{hISk — o] + h?|82(Sk — o)[}- (7.8)

Also from the second equation of (7.6),
|0:(Sh — o) =0 and  |Prds(Sh —o)| =0,
80 |05 (Sy — )| = |Prdzo — 80 |. From the first equation of (7.6),
ISk =TMpo| < Clo —pal,  so  [Sh —o| < Clo = ol
Therefore
|vn — Pru| < C{h|o — Tyo| + h?|PnOz0 — Oy0|}-

Similarly for equation (7.7)

D D D D
o — P2l < —g, - =
H D" PthuH = C{h” Dt DtUH

+ K2

(5Sh = o) + 1S -}, @9

and |Pydy (2.5, — 2.6)| =0, [0,(2 S, — T, 20)| = 0. So

2 = )] = [P o = de e

Also from the first equation of (7.7)

D D
< - o —Tl—= H .
HDt h DtUH —C{"S" U"JrHDtU "Dt? }

Therefore

- Bu e < {10~ ot 4] o T e
Vh th C{"Sh (f”+h o th

D
wﬁta

|

+ K2

_ PhazD%aH}. (7.10)
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In Theorem 15 choose vy, to be the solution of (7.6). Note that

D

D D
el <clafe-
|‘D#“ vn) | < O Papu = pyon

[A((B — @) - (0 = Sp))| < Clo — Sl
< Clo — o,
[A(c(u —vr))| < [A((c = &) (u — vn))| + [A(E(w — va))|
< Cl(e = e)(u—vn)| + APy (u — vn))|
< Ch(|u — Pyu| + |Pru — vp|) + C|Pru — vp|,

?

where ¢lo, = (1/|]) [, cdz, Vi, is a piece-wise constant function which commutes
with Pj,. The proof is completed using the approximation properties of the projections
Ph and Hh- O
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