On the Fully Polynomial Approximation Algorithm for

the 0-1 Knapsack Problem

Yingjie Liu *

Abstract. A modified fast approximation algorithm for 0-1 knapsack problem with improved
complexity is presented, based on the schemes of Ibarra, Kim and Babat. By using a new
partition of items, the algorithm solves the n-item 0-1 knapsack problem to any relative error

P* 1

tolerance € > 0 in the scaled profit space 7 = O(37), where § = 7 and a = O(logb),

with time O(nlog 1 + i) and space O(n + —5).

Key Words. Knapsack problem, subset-sum problem.

1 Introduction

The 0-1 knapsack problem (KP) is to solve for a given item set N = {1,2,---,n},

P* = mMax) jc N PjTj 1)
subject to ey wjz; < b,

where z; € {0,1} and p;, w; are positive integers. KP is NP-hard, but it can be solved in pseudo-

polynomial time O(nb) through dynamic programming. Note that the space for storing input

data b is m = logb, therefore the complexity contains an exponential function of m. The first

approximation scheme for KP was proposed by Sahni [9] and makes use of a greedy procedure.

The first fully polynomial approximation was found by Ibarra and Kim [3], and the same idea

was also found by Babat [1] independently. The basic strategy in Ibarra-Kim algorithm is: (a)to

*Department of Applied Mathematics and Statistics, SUNY at Stony Brook, NY 11789. email:

yingjie@ams.sunysb.edu

separate items into a class of “large” items and a class of “small” items, according to the size of
the profit p;; (b)to solve the KP problem for the “large” items only, with profits scaled by a factor
K > 0, through dynamic programming, and store the dynamic programming list in a table; (c)to
fill the residual capacity for each entry in the table with the “small” items. The time and space
complexity are O(nlogn + 6% log %) and O(n + %3) respectively. The Ibarra-Kim scheme has been
modified by Lawler[5] to obtain improved time complexity O(nlog 1 + %) and space O(n+ %), and
by Magazine and Oguz [7] to obtain time complexity O((n?logn)/e) and space O(2). In 1994, G.
Gens and E. Levner [2] proposed an approximation algorithm for the subset-sum problem which

has time complexity O(min(n/e,n + 1/€)) and O(min(n/e,n + 1/€2)) space.

The main idea of this paper is to use a modified partitioning in the Ibarra-Kim scheme to reduce
the size of the table described in (b), and then use the techniques in [5] to get time complexity
O(nlog 1 + ﬁ) and space O(n + 62%) with 0 < ¢ < 1. In particular, § = £ with @ = O(logb).

We first separate the items into "heavy”, ”large”, and others, then solve the problem through
dynamic programming for "heavy” and ”Large” items only, with profits scaled by a factor K
(differently for "heavy” and ”Large” items). This yields a final list of (Q, A) pairs, where @ is the
total scaled profit and A is the total weight satisfying A < b. The dominated pairs are discarded so
that for any two pairs (Q1, A1), (Q2, A2) in the list, either Q1 < Q2,41 < Az or Q1 > Q2, A1 > As.
For each pair (@, A) in the list, fill the remaining capacity b — A with other items using density

greedy method (i.e., ordering the items by non-increasing profit-to-weight ratios), which yields the

total profit ¢(b — A) for these items.

The following section provides two lemmas which are important for the proof of the main result

in section 3.

2 Preparation

: - ” ” 3 pPj R ” » 3 pj
An item j is called "heavy” if W > D ; it is called "large” if ¢/w; > W and ?/UJT—J < D . Where

D,W,a > 0 are to be determined later.

Lemma 1 If the knapsack problem is calculated using arbitrary combination of "heavy” and ”large”
items only and with the remaining capacity filled with other items using density greedy method, then

the optimal approzimation profit P is bounded by 0 < P* — P < DW.

Proof: Suppose P* is achieved by an item set J C N.

If J contains only "heavy” and ”large” items, then P = P*; if not, suppose all "heavy” and ”large”
items in J consist a subset I C J. Note that) ;c;p; + R < P, where R is the total profit fill-
ing the capacity b — > ;c; w; with other items through density greedy method. Also notice that
> jes—1pj — R < DW since the profit of every other item is no more than DW. Adding the above

two inequalities we have P* — P < DW.

We scale the profit space with a factor K > 0, and the new profit g; is defined as

L%J if item j is "heavy”,
G =14 [B]+1 ifitem j is "large”,
Dj otherwise.

We have the following lemma.

Lemma 2 If J is the set of "heavy” items and I is the set of ”large” items, then

—K|J <K g+ > a4)— O pi+>_pj) < K[|

jel jeJ jel jeJ
Proof:
1 1
& 2jeaPi = <X jerti < & 2jes Pi»
1 1
& 2erPi < Xert < % 2jerpi + |11,
therefore,

Qopi+> p)—KIJI<KQ g+) <D pi+Y pj)+ Kl

jeI jeJ jeI JjeJ jeI JjeJ
3 Algorithm

Separate the items into three sets called "heavy”, ”large” and others, and solve the problem using

"heavy” and ”large” items only in the scaled profit space, then we get a final list of (Q, A) pairs.

For each pair (@, A) in the list, fill the remaining capacity b — A with other items.

Let P = max(q,4) KQ + #(b — A). Suppose there exists an optimal solution (Qo, 4,) in which the
sum of the profits (unscaled) and the sum of the weights are Py and Ay respectively for “heavy”
items; Pr and Ay for “large” items. And Py and Ay are the sum of the profits and the sum of
the weights respectively for other items used to fill b — A,. Let @, @ be the sum of the scaled
profits corresponding to Py, Py, respectively, then there exists a pair (@, A) in the final list s.t.
Q>Qu+ QA< Ay + Ar, . Therefore

P>KQ+¢(b—A) > K(Qu+ QL)+ ¢(b—A). (2)

The number of "heavy” items contributing to the optimal cannot exceed DI:—\/:TO < %, where wy is
the smallest weight which is no less than 1. Similarly, the number of "large” items cannot exceed

b

wa- From Lemma 2 we have:

*

P
P*:PH+PL+PSgK(QH+QL)+K3+P5. (3)

Subtracting (2) from (3) gives:

k

P*—PgK%JrPs—qﬁ(b—A). (4)

From Lemma 1, it’s easy to know that P, — ¢(b — A) < DW, therefore

P*
P*—PSKE-I-DVV. (5)
We know P may be greater than P* only because of the scaling of profit space, and we have an
estimate of the number of ”large” and "heavy” items for the pair (Q, A). In fact, from Lemma 2
and the computation of ¢(b — A), we have

b
P—P*SKW.

There exists a Py (it’s determined by the corresponding linear programming problem in O(n)

time, for detail, see [5]), such that Py < P* < 2P,. Therefore in order to have |P — P*| < eP*, we

can set

K20 + DW = €P,,

Kz =ePy.

Cancel out W from (6), we have

2P0 Kb 1
— + D(—)a = €P,.
K25+ D)% = Py)
Assume
Py c
K2 amw)

where ¢ is a constant, ¢ > 0, 0 < § < 1 are to be determined later. Since (8) implies K < POETIH,

we get from (7) K250 + Deabaca > eP,. Solve for K we have

P, 2
EO < D Dyg 4,1 L (9)
6(?0) - (?0) €abac @
Choose s
1
“aca P,
p=% ¢t (10)
2ba

XS a1 (11)

Comparing (11) with (8) we canset 1+ =2 — g and ¢ = 8b§c_$, which implies

logb — logc «a Py c
- - d— =", 12
@ logc — log 8’ 1ta MK~ awn (12)

Finally, solve the second equation of (6), we get W = (%b)é

Theorem 1 Let ¢ > 8 be a constant. For any € > 0 and b > ¢, choose

azlogb—logc _ o« K:P061+5 D:el_gciPo Cde:(e&_b)é
logc —log 8’ 1+a’ c 2%ba c’

pP* 2Py . 2
then |P — P*| < eP*, and 7 < %2 = 5.

Note that @ = O(logb), we can not obtain a problem-independent lower bound. However, it
is interesting to see how large the profit space would be through some examples. In table 1, we

calculate the size of § with different values of ¢ and b.

b= 102 10° 10% 10°

c=16,0 = | 0.726 | 0.856 | 0.903 | 0.927

c=32,0 =|0.451 | 0.713 | 0.806 | 0.853

c=164,0 = |0.177 | 0.569 | 0.708 | 0.780

Table 1: Comparative § values for different b and c.

4 Remarks

Notice that D/K = O(%) according to theoreml, which is parallel to [5] with the partition param-
eter T replaced by D, therefore we can apply the techniques in [5] almost identically here, treating
the “large” and “heavy” items indiscriminately. Therefore the time for computing the (@, A) list
of “large” and “heavy” items will be O([4] - [P?*]) = O(ﬁ) The time for computing ¢(b — A)
for all (Q, A) pairs in the final list will be O(nlog (1) + [P?*] -log (1)). Therefore the total time will

be O(nlog 1 + —7z5). Similarly the space will be O(n + 2 - [22]) = O(n + —=55)-

Using the technique in [7] it is possible to trade more time for less space, we are not going to

discuss the technical details here.

5 Acknowledgments

I would like to thank Dr. Ramesh Krishnamurti for his wonderful course in linear programming at
Simon Fraser University, 1992. I became interested in the KP problem during the class and did a
project on it, which is what this paper is based on. Also I would like to thank one referee for the

valuable suggestions.

References

[1] L.G. Babat. Linear functions on the N-dimensional unit cube. Doklady Akademiia Nauk SSSR
222, 761-762, 1975.

2]

G. Gens and E. Levner. A fast approzimation algorithm for the subset-sum problem INFOR,
32, pages 143-148, 1994.

O.H. Ibarra , C.E. Kim. Fast approzimation algorithms for the Knapsack and sum of subset
problems. JACM V22, 4, pages 463-468, Oct.,1975.

R. Kohli , R. Krishnamurti. A total-value greedy heuristic for the integer knapsack problem.
Oper. Res. Lett. 12, pages 65-71, 1992.

E.L. Lawler. Fast approzimation algorithm for knapsack Problem. Proc. 18th Annual Sympo-
sium on Foundation of Computer Sci. IEEE Computer Society, Long Beach, pages 206-213,
1977.

Y. Liu. A fast approximation algorithm for the 0-1 Knapsack problem with adjustable complex-

ity. Graduate Course Project in Simon Fraser Univ., 1992.

M.J. Magazine , O. Oguz. A fully polynomial approzimation algorithm for the 0-1 knapsack

problem. Europ. Journal of Oper. Res. 8, pages 270-273, 1981.

S. Martello , P. Toth. Algorithm for Knapsack Problems. In Surveys in Combinatorial Opti-
mization. North-Holland, pages 213-258, 1987.

S. Sahni. Approzimate algorithms for the 0/1 Knapsack Problem. JACM V22, 1, pages 115-124,
Jan.,1975.

