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Abstract

Nessyahu and Tadmor�s central scheme [J. Comput. Phys. 87 (1990)] has the benefit of not using Riemann solvers for

solving hyperbolic conservation laws. But the staggered averaging causes large dissipation when the time step size is

small compared to the mesh size. The recent work of Kurganov and Tadmor [J. Comput. Phys. 160 (2000)] overcomes

this problem by using a variable control volume and results in semi-discrete and fully discrete non-staggered schemes.

Motivated by this work, we introduce overlapping cell averages of the solution at the same discrete time level, and

develop a simple alternative technique to control the O(1/Dt) dependence of the dissipation. The semi-discrete form

of the central scheme can also be obtained to which the TVD Runge–Kutta time discretization methods of Shu and

Osher [J. Comput. Phys. 77 (1988)] or other stable and sufficiently accurate ODE solvers can be applied. This technique

is essentially independent of the reconstruction and the shape of the mesh. The overlapping cell representation of the

solution also opens new possibilities for reconstructions. Generally speaking, more compact reconstruction can be

achieved. In the following, schemes of up to fifth order in 1D and third order in 2D have been developed. We demon-

strate through numerical examples that by combining two classes of the overlapping cells in the reconstruction we can

achieve higher resolution.
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1. Introduction

The central scheme of Nessyahu and Tadmor (NT) uses a staggered grid to avoid solving Riemann prob-

lems at cell edges and provides a black box solution to nonlinear hyperbolic conservation laws. In [31], a
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third order non-oscillatory central scheme was developed. In [6], third and fourth order central schemes

with ENO [10] reconstruction have been developed, in particular, the natural continuous extension of

the Runge–Kutta method [44] has been used in the evaluation of the flux integral which greatly improves

the efficiency for higher order central schemes. The recent work of Pareschi et al. [33] on the central Runge–

Kutta schemes does not use a quadrature rule in time for the fluxes, which further improves the efficiency.
In [25–27], a series of central WENO schemes have been developed with increasing order of accuracy. In

[11], a general procedure is introduced to develop central schemes on non-staggered grids. Central schemes

typically require the approximation of the flux integrated over time which in turn requires the evaluation of

the fluxes at middle time steps. In [1], solutions in previous time levels are used in the prediction of the flux

at middle time steps which reduces the computational cost in multi space dimensions. Since central schemes

usually use staggered averages, the time step size cannot be passed to zero. Kurganov and Tadmor [18]

solve the problem by using a variable control volume whose size depends on the time step size. By passing

to the limit as the time step size goes to zero, non-staggered semi-discrete schemes can be developed which
also reveal a connection between staggered central schemes and non-staggered schemes with the Lax–Fried-

richs flux instead of solving Riemann problems (e.g. ENO-LLF [40]), see also the review article by Shu [38]).

Higher order developments can be found, e.g., in [20,16]. Semi-discrete schemes can be used for a larger

class of equations where the time step size is sometimes small compared to the mesh size. The TVD

Runge–Kutta time discretization methods of Shu and Osher [39] or other stable and sufficiently accurate

ODE solvers can be applied to the semi-discrete schemes to obtain fully discrete schemes. Besides central

schemes and schemes with the Lax–Friedrichs flux, the relaxation scheme of Jin and Xin [14] also has no

need to solve Riemann problems. High order central WENO schemes with or without local characteristic
decomposition have been studied by Qiu and Shu [34]. We would like to refer to [5,13,19,7,41] etc. for more

related works.

In this paper, we introduce a new technique to control the dissipative error of the staggered central

schemes. The major idea is to introduce overlapping cell representation of the solution. An immediate

advantage is that the time discretization becomes simple by the use of the TVD Runge–Kutta methods.

Also by using a time step size dependent convex combination of the overlapping cell averages, the O(1/

Dt) dependent dissipative error can be easily controlled. Although the use of overlapping cells generally

doubles the computational cost, more efficient reconstruction methods using the combined information
from the overlapping cell averages could improve the resolution.

In Section 2, we introduce the 1D formulations of the central schemes on overlapping cells and introduce

the technique to control the dissipative error related to the small time step size. In Section 3, we discuss the

application to convection–diffusion equations for which the small time step size is usually required for ex-

plicit schemes. The reconstruction procedures for 1D overlapping cells are discussed in Section 4. In Section

5, we extend the techniques to 2D. 1D and 2D numerical examples are given in Section 6.
2. Central schemes for scalar conservation laws in one space dimension

Consider the 1D conservation law
ou
ot

þ of ðuÞ
ox

¼ 0; ðx; tÞ 2 R� ð0; T Þ;

uðx; 0Þ ¼ u0ðxÞ; x 2 R.
ð1Þ
Let {xi} be a uniform partition in R with Dx = xi+1 � xi and xiþ1=2 ¼ 1
2
ðxi þ xiþ1Þ. Let Ui(t) approximate the

cell average
R xiþ1=2

xi�1=2
uðx; tÞdx and Ui + 1/2(t) approximate the cell average

R xiþ1

xi
uðx; tÞdx;Un

i ¼
UiðtnÞ;Un

iþ1=2 ¼ Uiþ1=2ðtnÞ (see Fig. 2). By applying a MUSCL [42] or ENO [10] or any other non-oscillatory
reconstruction procedure to the two sets of cell averages, one obtains a function ln(x) which is a piecewise
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polynomial for cells {(xi�1/2, xi+1/2) : i = 0, ±1, ±2, . . .} and a function mn(x) which is a piecewise polynomial

for cells {(xi,xi+1) : i = 0, ±1, ±2, . . .}. They satisfy 1
Dx

R xiþ1=2

xi�1=2
lnðxÞdx ¼ Un

i and 1
Dx

R xiþ1

xi
mnðxÞdx ¼ Un

iþ1=2. Let

Dtn = tn+1 � tn be the current time step size. The central scheme on overlapping cells can be written in

the forward Euler form as follows:
Unþ1
i ¼ 1

Dx

Z xiþ1=2

xi�1=2

mnðxÞdx� Dtn
Dx

½f ðmnðxiþ1=2ÞÞ � f ðmnðxi�1=2ÞÞ�;

Unþ1
iþ1=2 ¼

1

Dx

Z xiþ1

xi

lnðxÞdx� Dtn
Dx

½f ðlnðxiþ1ÞÞ � f ðlnðxiÞÞ�.
ð2Þ
Kurganov and Tadmor [18] point out that since the numerical dissipation from 1
Dx

R xiþ1=2

xi�1=2
mnðxÞdx does not

depend on Dtn, the cumulative error depends on O(1/Dt), the total number of time steps in the computation.

Therefore when Dt is very small, e.g. Dt = O(Dx2) in some situations, the numerical dissipation becomes

large. This is easy to understand if f(u) ” 0, then what the central scheme does is conservative rezoning

at every time step, which will smear out the solution with increasing number of time steps. By choosing
the size of the control volume (xi,xi+1) proportional to Dt as in [18], this O(1/Dt) dependence can be re-

moved and by passing to the limit as Dt ! 0, semi-discrete schemes can be developed. Here we introduce

another technique to remove the O(1/Dt) dependence of the error taking advantage of the overlapping cell

representations Un
i and Un

iþ1=2. The idea is to use a time dependent weighted average of
1
Dx

R xiþ1=2

xi�1=2
mnðxÞdx and Un

i in the first equation of (2), which does not change the order of accuracy of the

scheme. In fact the difference between them is the local dissipation error. Suppose Dtn 6 Dsn and Dsn is

an upper bound for the current time step size due to the CFL restriction. The forward Euler form of the

new central scheme can be formulated as follows:
Unþ1
i ¼ h

1

Dx

Z xiþ1=2

xi�1=2

mnðxÞdx
 !

þ ð1� hÞUn
i �

Dtn
Dx

½f ðmnðxiþ1=2ÞÞ � f ðmnðxi�1=2ÞÞ�;

Unþ1
iþ1=2 ¼ h

1

Dx

Z xiþ1

xi

lnðxÞdx
� �

þ ð1� hÞUn
iþ1=2 �

Dtn
Dx

½f ðlnðxiþ1ÞÞ � f ðlnðxiÞÞ�;
ð3Þ
where h = Dtn/Dsn. See Figs. 1 and 3. Note that when h = 1, it becomes scheme (2). One can also obtain the

following semi-discrete form by moving Un
i and Un

iþ1=2 to the left-hand side and multiplying both sides by
1
Dtn
, then passing to the limit as Dtn ! 0,
d

dt
UiðtnÞ ¼

1

Dsn

1

Dx

Z xiþ1=2

xi�1=2

mnðxÞdx� Un
i

" #
� 1

Dx
½f ðmnðxiþ1=2ÞÞ � f ðmnðxi�1=2ÞÞ�;

d

dt
Uiþ1=2ðtnÞ ¼

1

Dsn

1

Dx

Z xiþ1

xi

lnðxÞdx� Un
iþ1=2

� �
� 1

Dx
½f ðlnðxiþ1ÞÞ � f ðlnðxiÞÞ�.

ð4Þ
The forward Euler forms (2) and (3) are only first order accurate in time, but they can be used as building

blocks of the Heun scheme or the high order TVD Runge–Kutta time discretization methods [39]. To study

the non-oscillatory property of scheme (3), denote TVfUnþ1
i g ¼

P
ijUnþ1

iþ1 � Unþ1
i j as the total variation of

Unþ1
i . We say scheme (2) or (3) is TVD from the time tn to tn+1 if
maxfTVfUnþ1
i g;TVfUnþ1

iþ1=2gg 6 maxfTVfUn
i g;TVfUn

iþ1=2gg < 1.
Theorem 1. Let schemes (2) and (3) start from the same time tn with the same initial values Un
i and Un

iþ1=2. If

scheme (2) is TVD from the time tn to tn + Dsn, then scheme (3) is also TVD from the time tn to tn + Dtn for any
Dtn 2 [0, Dsn].



Fig. 1. Nessyahu and Tadmor�s central scheme.

Fig. 2. 1D overlapping cells.
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Proof. Note that the first equation of (3) can be rewritten as
Unþ1
i ¼ h

1

Dx

Z xiþ1=2

xi�1=2

mnðxÞdx� Dsn
Dx

½f ðmnðxiþ1=2Þ � f ðmnðxi�1=2Þ�
( )

þ ð1� hÞUn
i .
This is a convex combination of Un
i and Unþ1

i computed by scheme (2) with the time step size Dsn. Since
scheme (2) is TVD for the time step size Dsn, U

nþ1
i computed by scheme (3) satisfies
TVfUnþ1
i g 6 maxfTVfUn

i g;TVfUn
iþ1=2gg < 1.
Similarly from the second equation of (3) we conclude that Unþ1
iþ1=2 computed by (3) satisfies
TVfUnþ1
iþ1=2g 6 maxfTVfUn

i g;TVfUn
iþ1=2gg.
The proof is complete. h



Fig. 3. Central scheme on overlapping cells allows a convex combination of the cell averages.
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Remark. The proof follows closely the strategy used in [39]. If we change the definition of the total varia-

tion to
TVfUnþ1
i g ¼

X
2i¼0;�1;�2;���

jUnþ1
i � Unþ1

i�1=2j;
Theorem 1 is still true following a similar argument. These two versions of the theorem provide us with

some insights into two reconstruction procedures: one is a standard reconstruction from two classes of cell

averages fUn
i : i ¼ 0;�1;�2; . . .g and fUn

iþ1=2 : i ¼ 0;�1;�2; . . .g separately; the other mixes the two clas-

ses in the reconstruction. We will discuss more about the latter in the following sections.

Note that in (3),
h
1

Dx

Z xiþ1=2

xi�1=2

mnðxÞdx
 !

þ ð1� hÞUn
i ¼ Un

i þ
Dtn
Dsn

1

Dx

Z xiþ1=2

xi�1=2

mnðxÞdx� Un
i

 !
;

Dsn = O(Dx) is due to the CFL restriction for scheme (2). Therefore the local dissipative error now has a

factor Dtn and the cumulative error will not be degenerated by choosing very small Dtn. It is interesting

to study the lowest order case of (3) and compare it to the Lax–Friedrichs scheme [21],
Unþ1
i ¼ h

Un
i�1=2 þ Un

iþ1=2

2
þ ð1� hÞUn

i �
Dtn
Dx

ff ðUn
iþ1=2Þ � f ðUn

i�1=2Þg ¼ Un
i �

Dtn
Dx=2

fF n
iþ1=4 � F n

i�1=4g;
where F n
iþ1=4 ¼ 1

2
ff ðUn

i Þ þ f ðUn
iþ1=2Þg þ 1

2

Dx=2
Dsn

ðUn
i � Un

iþ1=2Þ. This is the Lax–Friedrichs flux with the diffu-

sive coefficient Dx=2
Dsn

(see, e.g., [38]), which should be chosen to be larger than maxujf 0(u)j in order for the flux

F n
iþ1=4 to be a monotone flux. Therefore (3) in the lowest order case can be viewed as a finite volume scheme

with the Lax–Friedrichs flux. When h = 1, i.e. Dtn = Dsn, it becomes the original non-staggered Lax–

Friedrichs scheme on a mesh of size Dx/2.
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Remark. 1. The CFL restriction for (2) (thus (3) by Theorem 1) requires that
Dsn sup
u

jf 0ðuÞj=Dx 6 1

2
;

where the left-hand side is called the CFL factor. Dsn controls the dissipation (which increases with

decreasing Dsn). Once it is set, the actual time step size Dtn must be no larger than Dsn. For the

TVD Runge–Kutta methods of orders up to 3, h can take any value in [0, 1]. For purely hyperbolic
problems, h should be chosen as large as possible (i.e., 1) in order to reduce the computational cost.

In most of the numerical experiments we only show the results with h ¼ 1
2
for the purpose of testing

the schemes, and find no significant difference among the solutions for any h 2 (0, 1]. In one form of

the fourth order TVD Runge–Kutta methods [39], its CFL factor (not the CFL factor for choosing

Dsn) is no larger than 2/3, which implies that h 6 2/3 when applying it to the semi-discrete scheme

(4).

2. The Glimm scheme [8] is formulated on the staggered grid. By using overlapping cells, it could also be

written in a semi-discrete form parallel to the procedure from (2) through (4).
3. Central schemes for convection–diffusion equations in one space dimension

Consider the convection–diffusion equation
ou
ot

þ of ðuÞ
ox

¼ o

ox
aðu; x; tÞ ou

ox

� �
; ðx; tÞ 2 R� ð0; T Þ;

uðx; 0Þ ¼ u0ðxÞ; x 2 R;
ð5Þ
where a(u, x, t) P 0. Following the work of Kurganov and Tadmor [18], we can discretize Eq. (5) as

follows:
Unþ1
i ¼ h

1

Dx

Z xiþ1=2

xi�1=2

mnðxÞdx
 !

þ ð1� hÞUn
i �

Dtn
Dx

½f ðmnðxiþ1=2ÞÞ � f ðmnðxi�1=2ÞÞ�

þ Dtn
Dx

aðUn
iþ1=2; xiþ1=2; tnÞ

Un
iþ1 � Un

i

Dx
� aðUn

i�1=2; xi�1=2; tnÞ
Un

i � Un
i�1

Dx

� �
;

Unþ1
iþ1=2 ¼ h

1

Dx

Z xiþ1

xi

lnðxÞdx
� �

þ ð1� hÞUn
iþ1=2 �

Dtn
Dx

½f ðlnðxiþ1ÞÞ � f ðlnðxiÞÞ�

þ Dtn
Dx

aðUn
iþ1; xiþ1; tnÞ

Un
iþ3=2 � Un

iþ1=2

Dx
� aðUn

i ; xi; tnÞ
Un

iþ1=2 � Un
i�1=2

Dx

� �
;

ð6Þ
where h = Dtn/Dsn, Dsn is the maximum time step size determined by the CFL restriction for the hyperbolic

part of Eq. (5), ou
ot þ

of ðuÞ
ox ¼ 0.

Theorem 2. Let schemes (2) and (6) start from the same time tn with the same initial values Un
i and Un

iþ1=2. If

scheme (2) is TVD from the time tn to tn + Dsn, then scheme (6) is also TVD from the time tn to tn + Dtn, for any
Dtn 6

DsnDx2

Dx2þ2anDsn
, where
an ¼ supfaðUn
iþ1; xiþ1; tnÞ; aðUn

iþ1=2; xiþ1=2; tnÞ: i ¼ 0;�1;�2; . . .g.
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Proof. Note that the first equation of (6) can be written as
Unþ1
i ¼ h

1

Dx

Z xiþ1=2

xi�1=2

mnðxÞdx� Dsn
Dx

½f ðmnðxiþ1=2ÞÞ � f ðmnðxi�1=2ÞÞ�
( )

þ 1� h�
ðaðUn

iþ1=2; xiþ1=2; tnÞ þ aðUn
i�1=2; xi�1=2; tnÞÞDtn

Dx2

� �
Un

i þ
DtnaðUn

i�1=2; xi�1=2; tnÞ
Dx2

Un
i�1

þ
DtnaðUn

iþ1=2; xiþ1=2; tnÞ
Dx2

Un
iþ1.
The condition of the theorem ensures that the coefficient of Un
i is non-negative. Therefore U

nþ1
i in the first

equation of (6) is a convex combination of Un
i ;U

n
i�1;U

n
iþ1 and Unþ1

i computed from scheme (2) with the time

step size Dsn. Since scheme (2) is TVD for the time step size Dsn, U
nþ1
i computed by scheme (6) satisfies
TVfUnþ1
i g 6 maxfTVfUn

i g;TVfUn
iþ1=2gg < 1.
Similarly for the second equation of (6), the proof is complete. h

Remark. The examples reported in the paper are aimed to show the flexibility of the new approach, and

its capability to handle small time steps, without introducing excessive numerical dissipation. The more

efficient way to overcome the small time step restriction is to use the implicit-explicit time discretization,

e.g. [3,15,23], which treats the advection part explicitly, and the diffusion part implicitly, thus avoiding the
O(Dx2) stability restriction on the time step due to the diffusion term, or to use a fast explicit Runge–

Kutta solver, e.g. [24,30]. Well-balanced central schemes for shallow water equation have been developed

both for staggered [36] and non-staggered [17] methods. Up to now the non-staggered version of the well-

balanced scheme is simpler since the semi-discrete schemes maintain the numerical solution of ou
ot ¼ 0,

while staggered methods allow it only if u = constant. It will be interesting to see what happens when

one applies the methods developed here to the balance law. These will be further explored in the future.
4. Reconstructions in one space dimension

In order to separate the two classes of cells, denote V n
i ¼ Un

iþ1=2 on cell Di = (xi, xi+1) and denote
Ci = (xi�1/2, xi+1/2), see Fig. 4. A straightforward reconstruction is to do it for the cell classes {Ci} and

{Di} separately. Since there is no overlapping in {Ci} or in {Di}, standard reconstruction methods, e.g.
Fig. 4. 1D overlapping cells with the change of notation.
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MUSCL, ENO, etc., can be applied. The interesting question is what happens if we combine the cells {Ci}

and {Di} in the reconstruction.

Remark. In general, since the reconstruction at each time involves two classes of cells, the complexity of a

central scheme on overlapping cells is twice as much as the NT scheme or other central schemes on the

staggered grid with the same order of accuracy.
4.1. A fifth order reconstruction using combined cells

Let�s consider for example the reconstruction for cell Ci with the cell average Un
i . For simplicity we only

use the information from overlapping cells adjacent to cell Ci, see Fig. 4. Adapting the strategy of Abgrall

[4] to overlapping cells, the highest order polynomial determined by the cell averages is fourth order. Let
p4ðxÞ ¼ a0 þ a1ðx� xiÞ þ a2ðx� xiÞ2 þ a3ðx� xiÞ3 þ a4ðx� xiÞ4;

satisfy 1

Dx

R
Cj
p4ðxÞdx ¼ Un

j , j = i, i ± 1 and 1
Dx

R
Dj
p4ðxÞdx ¼ V n

j , j = i, i � 1. The coefficients of p4 are uniquely

determined as follows:
a0 ¼ ½Un
i�1 þ Un

iþ1 þ 46Un
i � 9ðV n

i�1 þ V n
i Þ�=30;

a1 ¼ ½Un
i�1 � Un

iþ1 � 5ðV n
i�1 � V n

i Þ�=ð3DxÞ;
a2 ¼ �½Un

i�1 þ Un
iþ1 þ 14Un

i � 8ðV n
i�1 þ V n

i Þ�=ð2Dx2Þ;
a3 ¼ �2½Un

i�1 � Un
iþ1 � 2ðV n

i�1 � V n
i Þ�=ð3Dx3Þ;

a4 ¼ 2½Un
i�1 þ Un

iþ1 þ 6Un
i � 4ðV n

i�1 þ V n
i Þ�=ð3Dx4Þ.

ð7Þ
This reconstruction is oscillatory if the solution is non-smooth. The simplest way to overcome this problem

is to combine it with lower order polynomials, using proper smoothness indicators to turn on the high order

polynomial in the smooth region and turn it off in the non-smooth region. This follows the WENO strategy

of Liu et al. [29], Jiang and Shu [12], Liu and Osher [28], Liu and Tadmor [31], etc. In particular, it follows

[26,16] in which the reconstruction is based on the convex combination of linear polynomials and a qua-
dratic polynomial.

Let pl(x) be the linear polynomial with the given cell averages in cells Di�1 and Ci and pr(x) be the linear

polynomialwith the given cell averages in cellsCi andDi. Let p(x) = w4p4(x) + wl pl(x) + wr pr(x)wherew4,wl,wr

are some non-negative weights satisfyingw4 + wl + wr = 1, so that p(x) also has the given cell averageUn
i in cell

Ci. In order to determine the weights, let IS4, ISl and ISr be the corresponding smoothness indicators so that

IS4 = 1/[(Dxa4)
2 + �], ISl ¼ 1=½IS4 þ ðDxp0lÞ

2 þ �� and ISr = 1/[IS4 + (Dxp 0
r)
2 + �], where � = 10�6. Let

w = IS4 + ISl + ISr, w4 = IS4/w, wl = ISl/w and wr = ISr/w. It is easy to see that when the stencil of cells

{Ci�1, . . . , Ci+1} contains a discontinuity of the solution, IS4 = O(Dx6), and 1/ISl, 1/ISr = O(1). Therefore
w4 = O(Dx6) which is within the accuracy level O(Dx5) and it is small enough to control p4(x). Also wl and

wrwill shift theweights to the flatter linear polynomial.When the stencil lies in a smooth region of the solution,

IS4 = O(Dx�2), ISl, ISr = O(Dx2), thus wl, wr = O(Dx4). Therefore wl and wr are small enough to scale the

approximation errors of pl and pr down to the accuracy level O(Dx5). These weights satisfy the WENO prin-

ciple defined in [29] and the reconstruction has fifth formal order of accuracy for smooth solutions.

4.2. A third order ENO reconstruction using combined cells

In order to construct a quadratic polynomial
p2ðxÞ ¼ a0 þ a1ðx� xiÞ þ a2ðx� xiÞ2
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in cell Ci, there are three possible ENO stencils of overlapping cells to choose from, namely

{Ci�1, Di�1, Ci}, {Di�1, Ci, Di} or {Ci, Di, Ci+1}, see Fig. 4. Viewing the cell averages as point values at their

respective cell centers, the Newton divided difference [10] can be used as the smoothness indicator to pick

one stencil which contains the smoothest data. For example, if the stencil {Di�1, Ci, Di} is chosen, then the

coefficients of p2 can be determined by letting 1
Dx

R
Di�1

p2ðxÞdx ¼ V n
i�1;

1
Dx

R
Ci
p2ðxÞdx ¼ Un

i

and 1
Dx

R
Di
p2ðxÞdx ¼ V n

i . The quadratic ENO reconstruction using combined overlapping cells has third for-

mal order of accuracy for smooth solutions.
4.3. Second order ENO and MUSCL reconstructions using combined cells

We apply the second order ENO or MUSCL reconstruction for cell Ci using only the closest overlapping

cells, Di�1 and Di, see Fig. 4. Since the linear polynomial p1ðxÞ ¼ Un
i þ a1ðx� xiÞ has the given cell average

Un
i in cell Ci, the only thing left is to determine the slope a1. The MUSCL reconstruction with the minmod

function gives
a1 ¼ minmod
V n

i � Un
i

Dx=2
;
Un

i � V n
i�1

Dx=2

� �
;

where minmodða; bÞ ¼ 1
2
½sgnðaÞ þ sgnðbÞ�minfjaj; jbjg. The ENO reconstruction gives a1 ¼ V n

i �Un
i

Dx=2 if

jV n
i � Un

i j 6 jUn
i � V n

i�1j;
Un

i �V n
i�1

Dx=2 otherwise. These reconstructions have second formal order of accuracy

for smooth solutions.

Remark. With the MUSCL reconstruction using combined overlapping cells in 1D, and if the fluxes in

scheme (2) are evaluated at the middle time level tn þ 1
2
Dtn, then it becomes the scheme ORD in [32] with

mesh size 1
2
Dx.
5. Extension to two space dimensions

Consider the conservation law in two space dimensions
ou
ot

þ of ðuÞ
ox

þ ogðuÞ
oy

¼ 0; ðx; y; tÞ 2 R2 � ð0; T Þ. ð8Þ
Assume a uniform rectangular mesh with mesh size Dx · Dy and cell center positions xi,j = (xi, yj) = (iDx, j-
Dy). Let Un

i;j approximate the cell average of u in the cell centered at xi,j at the time tn. The most common

staggered mesh would be to shift the original mesh along the vector ð1
2
Dx; 1

2
DyÞ, causing the cell centered at

xi,j to be shifted to a new cell centered at yi;j ¼ xi;j þ ð1
2
Dx; 1

2
DyÞ. Let V n

i;j approximate the cell average of u in

this the new cell at the time tn. We have defined the approximated cell averages of u on overlapping cells (see

Fig. 5, the original cells are bounded by solid lines and the shifted dual cells are bounded by dashed lines).

To simplify the terminology, we call the original cell centered at xi,j the cell of Ui,j and the shifted dual cell

centered at yi,j the cell of Vi,j. Let l
n(x, y) be a piecewise polynomial reconstructed on the original cells of

{Ui,j} and mn(x, y) be another piecewise polynomial reconstructed on the shifted dual cells of {Vi,j}, such

that
1

jcell ofUi;jj

Z
cell of Ui;j

lnðx; yÞdxdy ¼ Un
i;j;

1

jcell ofV i;jj

Z
cell of V i;j

mnðx; yÞdxdy ¼ V n
i;j;



Fig. 5. 2D (staggered) overlapping cells.
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where jcell of Ui,jj = DxDy is the area of the cell. The 2D central scheme in the forward Euler form analo-

gous to (3) can be written as follows:
Unþ1
i;j ¼h

1

jcell of Ui;jj

Z
cell of Ui;j

mn dxdy

 !

þ ð1� hÞUn
i;j �

Dtn
jcell of Ui;jj

Z
oðcell of Ui;jÞ

ðf ðmnÞ; gðmnÞÞ � nds;

V nþ1
i;j ¼h

1

jcell of V i;jj

Z
cell of V i;j

ln dxdy

 !

þ ð1� hÞV n
i;j �

Dtn
jcell of V i;jj

Z
oðcell of V i;jÞ

ðf ðlnÞ; gðlnÞÞ � nds;

ð9Þ
where n denotes unit outer normal of the corresponding cell boundary, h = Dtn/Dsn 6 1,

Dtn = tn+1 � tn is the actual time step size, Dsn is the maximum time step size determined by

the CFL restriction. The evaluation of the fluxes integrated along the cell boundary can be com-

puted with the quadrature, see, e.g., [27]. The semi-discrete form can also be obtained as follows

by moving Un
i;j andV

n
i;j to the left-hand side and multiplying both sides by 1

Dtn
, then passing to

the limit as Dtn ! 0,
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d

dt
U i;jðtnÞ ¼

1

Dsn

1

jcell of Ui;jj

Z
cell of Ui;j

mn dxdy � Un
i;j

 !

� 1

jcell of Ui;jj

Z
oðcell of Ui;jÞ

ðf ðmnÞ; gðmnÞÞ � nds;

d

dt
V i;jðtnÞ ¼

1

Dsn

1

jcell of V i;jj

Z
cell of V i;j

ln dxdy � V n
i;j

 !

� 1

jcell of V i;jj

Z
oðcell of V i;jÞ

ðf ðlnÞ; gðlnÞÞ � nds.

ð10Þ
The TVD Runge–Kutta methods [39] or other ODE solvers can be applied to (10) to obtain a fully dis-
crete scheme with suitable order of accuracy in time.

Remark. 1. Scheme (10) could also be adapted to a Voronoi type mesh (a triangular mesh plus its dual), so

that the cells of {Ui,j} represent the triangular cells and the cells of {Vi,j} represent the dual cells. See [1,2]

for a discussion of central finite volume schemes on unstructured meshes.
2. The central Runge–Kutta schemes [33] can also be applied to (9) so that the finite volume

reconstruction is only necessary at the time tn in order to compute the point values at cell centroids

and
h
1

jcell of Ui;jj

Z
cell of Ui;j

mn dxdy

 !
þ ð1� hÞUn

i;j.
Then reconstruction from these point values can be done at each Runge–Kutta intermediate stages to find

the so called Runge–Kutta fluxes. This is more efficient in higher order case since in general, the reconstruc-

tion from point values is of lower cost than the finite volume reconstruction. This will be further explored in

the future.

As in the 1D case, the reconstruction can be done for each class of cells separately or for combined over-

lapping cells. The second order reconstructions for combined overlapping cells are particularly simple. For

example, consider the second order ENO reconstruction for the cell of Un
i;j. Since the linear polynomial
p1ðxÞ ¼ Un
i;j þ a1 � ðx� xi;jÞ;
has the given cell average in the cell of Ui,j, where x = (x, y), the only thing left is to determine the gradient

a1. Note that the cell average of a function is a second order approximation to the function value at the cell

centroid. These approximated function values at xi,j and 2 nearby cell centroids determine the discrete gra-

dient of the function at xi,j. Among all possible first order approximations of the gradient obtained by two
cells and the cell of Ui,j, one can construct a discrete gradient a1 so that each of its two components is the

smallest (in absolute value). In particular, the two cells can be chosen from the cells of Vi�1,j, Vi,j, Vi,j�1 or

Vi�1,j�1, or from the cells of Ui�1,j, Vi�1,j, Ui,j+1, Vi,j, Ui+1,j, Vi,j�1, Ui,j�1 or Vi�1,j�1, see Fig. 5.
5.1. A third order finite volume ENO reconstruction in 2D using combined cells

Standard finite volume ENO reconstruction in 2D can be adapted to overlapping cells, see [10,38] for

ENO, [27] for a finite volume WENO reconstruction for central schemes. We assume a uniform rectangular

mesh with Dx = Dy. A typical ENO stencil with 9 combined overlapping cells E1, E2, . . . , E9 is shown in

Fig. 6. This stencil uniquely determines a bi-quadratic polynomial
P ðx; yÞ ¼ a1 þ a2xþ a3y þ a4x2 þ a5xy þ a6y2 þ a7x2y þ a8xy2 þ a9x2y2
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by letting ð1=jEkjÞ
R
Ek
P dxdy ¼ Un

Ek
, k = 1, 2, . . . , 9, where jEkj = Dx2 is the area of the cell and Un

Ek
is the

given cell average at cell Ek. In the following computations, the inverse of the coefficient matrix of this lin-

ear system is first found numerically and then used for all the reconstructions. There are 9 such stencils con-

taining the cell of Ui,j in Fig. 5, which determine 9 bi-quadratic polynomials Pk(x, y), k = 1, 2, . . . , 9, defined
on the cell of Ui,j. Among them, only one Pk(x, y) will be chosen whose smoothness indicator ISk is the
smallest, where ISk is defined as follows:
ISk ¼ jPkðxi;jÞ � Un
i;jj þ

Dx
2

oPk

ox
ðxi;jÞ

����
����þ oPk

oy
ðxi;jÞ

����
����

� �

þ Dx2

3

o2Pk

ox2
ðxi;jÞ

����
����þ o2Pk

oxoy
ðxi;jÞ

����
����þ o2Pk

oy2
ðxi;jÞ

����
����

� �
.

The chosen Pi(x, y) defined on the cell of Ui,j will be the reconstructed polynomial on the cell of Ui,j. This

should be done for all the cells of {Ui,j} in order to obtain the piecewise polynomial l(x,y), similarly for the

reconstruction of the piecewise polynomial m(x, y) for the cells of {Vi,j}.
6. Numerical experiments

Scheme (4) with the rth order (r = 2, 3) ENO reconstruction which is separate for the two classes of cells

is referred to as CO-ENO-r and has rth formal order of accuracy for smooth solutions. If the reconstruction

is done by combining the overlapping cells, it is referred to as COC-ENO-r (rth order). Scheme (4) with the

reconstruction presented in Section 4.1 is referred to as COC-WENO-2-5. Scheme (10) with the third order

ENO reconstruction presented in Section 5.1 is still referred to as COC-ENO-3. The corresponding (up to

third order) TVD Runge–Kutta time discretization methods are applied to the above schemes. Only the
solution in one class of the overlapping cells is shown in the graphs throughout this section. The second

order scheme developed in [18] is referred to as FD2. For systems of equations, the component-wise exten-

sions of the scalar schemes (without characteristic decomposition) have been used in all the computations.

Example 1. We test the convergence of several schemes for the 1D linear advection equation
ut þ ux ¼ 0; x 2 ½0; 2�; uðx; 0Þ ¼ 1þ sinðpxÞ; x 2 ½0; 2�;
Fig. 6. ENO stencil with combined overlapping cells.
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with periodic boundary conditions. The final time is T = 2. For the central schemes on overlapping cells,

Dsn is chosen with CFL factor 0.45, Dtn = 0.5Dsn. For the NT scheme, Dtn is determined with CFL factor

0.45 (see Tables 1–6). The relative l1 and l1 errors are defined as ku� Uk1 ¼
P

ijui � UijDx=
P

ijuijDx and

iu � Ui1 = maxijui � Uij/maxijuij respectively. It seems that the error when applying reconstruction for

combined overlapping cells is about 1/r times the error when applying reconstruction for two classes
of cells separately, where r is the order of the scheme (see e2/e1 and E2/E1 in Table 3, e4/e3 and E4/E3

in Table 5). This is clearly related to the smaller distance between the two overlapping cell centers.

The slight degeneration of accuracy with the second order ENO reconstruction is related to the non-

smoothness of the numerical flux caused by the abrupt shifting of the stencil. This problem can be fix-

ed.See [37,35] for a discussion of this problem and [6] for a central scheme setting. The smaller errors of
Table 1

NT scheme

Dx 1/20 1/40 1/80 1/160 1/320

Rel. l1 error 0.00545 0.00148 0.000392 0.000104 2.69e�05

Order – 1.88 1.92 1.97 1.89

Rel. l1 error 0.0110 0.00460 0.00189 0.000774 0.000314

Order – 1.26 1.28 1.29 1.30

Table 2

COC-ENO-2

Dx 1/20 1/40 1/80 1/160 1/320

Rel. l1 error e1 0.0145 0.00400 0.00108 0.000291 7.65e�05

Order – 1.86 1.89 1.89 1.93

Rel. l1 error E1 0.0219 0.00920 0.00378 0.00153 0.000618

Order – 1.25 1.28 1.30 1.31

Rel. l1 error e�1 0.00300 0.000775 0.000206 5.35e�05 1.39e�05

Table 3

CO-ENO-2

Dx 1/20 1/40 1/80 1/160 1/320

Rel. l1 error e2 0.0272 0.00767 0.00208 0.000568 0.000150

e2/e1 1.88 1.92 1.93 1.95 1.96

Rel. l1 error E2 0.0353 0.0148 0.00609 0.00247 0.000997

E2/E1 1.61 1.61 1.61 1.61 1.61

Table 4

COC-ENO-3

Dx 1/20 1/40 1/80 1/160 1/320

Rel. l1 error e3 0.000277 3.46e�05 4.32e�06 5.40e�07 6.75e�08

Order – 3.00 3.00 3.00 3.00

Rel. l1 error E3 0.000223 2.77e�05 3.45e�06 4.31e�07 5.37e�08

Order – 3.01 3.01 3.00 3.00



Table 5

CO-ENO-3

Dx 1/20 1/40 1/80 1/160 1/320

Rel. l1 error e4 0.000816 0.000102 1.27e�05 1.59e�06 1.99e�07

e4/e3 2.95 2.95 2.94 2.94 2.95

Rel. l1 error E4 0.000683 8.47e�05 1.06e�05 1.31e�06 1.62e�07

E4/E3 3.06 3.06 3.07 3.04 3.02

Table 6

COC-WENO-2-5, Dtn ¼ minf1
2
Dsn;Dx5=3g

Dx 1/20 1/40 1/80 1/160 1/320

Rel. l1 error 1.39e�05 2.26e�07 3.76e�09 7.25e�11 2.18e�12

Order – 5.94 5.91 5.70 5.06

Rel. l1 error 1.76e�05 3.06e�07 5.48e�09 1.09e�10 2.20e�12

Order – 5.85 5.80 5.65 5.63
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the NT scheme are due to its predictor-corrector time discretization. To see this, we compute e�1 in Table

2 using COC-ENO-2 (Dtn = 0.44Dx, Dsn = 0.45Dx) with the fluxes in (3) evaluated at tn þ 1
2
Dtn.The result-

ing errors are about half of the sizes of the corresponding l1 errors inTable 1.

Example 2. We test the numerical dissipation of scheme CO-ENO-2 for the 1D Burgers equation
ut þ
1

2
u2

� �
x

¼ 0; x 2 ½0; 2�; uðx; 0Þ ¼ 1þ sinðpxÞ; x 2 ½0; 2�;
with periodic boundary conditions. The final time is T = 0.7. In Fig. 7(a) and (b), we fix Dsn = Dx/4 and

choose the time step sizes Dtn = Dx/4 and (Dx/4)2 respectively. There is no significant difference between
the two results. As a comparison, in Fig. 7(c), we compute the same problem again with

Dsn = Dtn = (Dx/4)2. It is clear that the numerical dissipation increases as Dsn ! 0.

Example 3. We compute a hyperbolic–parabolic equation [18] using scheme (6) with the quadratic ENO

reconstruction for combined overlapping cells (Section 4.2). Eq. (5) is set with f(u) = u2, a(u, x, t) = 0 if

juj 6 0.25; a(u, x, t) = 0.1 if juj > 0.25. The initial value is
u0ðxÞ ¼
1; � 1ffiffi

2
p � 0.4 < x < � 1ffiffi

2
p þ 0.4;

�1; 1ffiffi
2

p � 0.4 < x < 1ffiffi
2

p þ 0.4;

0; otherwise.

8><
>:
We take Dsn = 0.24Dx by the CFL restriction of the hyperbolic part of the equation. The actual time step

size is Dtn = DxDsn. The results are shown in Fig. 8 at T = 0.7. Clearly the small time step size doesn�t seem
to introduce excessive numerical dissipation.

Example 4. The nonlinear Buckley–Leverett problem (with a non-convex flux) is ut + f(u)x = 0, with

f(u) = 4u2/(4u2 + (1 � u)2). Initially, u = 1 in [�1/2, 0] and u = 0 elsewhere in the computational

domain [�1, 1]. We want to see if COC-ENO-3 converges to the entropy solution. In Fig. 9, the

computational results are plotted against the exact solution at T = 0.4, with Dx = 1/40, Dsn = 0.1Dx,
Dtn = 0.5Dsn on the left, Dtn = 0.01Dsn on the right. There seems to be no significant difference

between them.



Fig. 7. Comparative results for Burgers equation by CO-ENO-2, Dx = 0.02, T = 0.7. (a) Dsn ¼ 1
4
Dx;Dtn ¼ 1

4
Dx. (b)

Dsn ¼ 1
4
Dx;Dtn ¼ ð1

4
DxÞ2. (c) Dsn ¼ Dtn ¼ ð1

4
DxÞ2.
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Example 5. We compute the Euler equation with Lax�s initial data. ut + f(u)x = 0 with u = (q, qv, E)T,
f(u) = (qv, qv2 + p, v(E + p))T, p ¼ ðc� 1ÞðE � 1

2
qv2Þ, c = 1.4. Initially, the density q, momentum qv and

total energy E are 0.445, 0.311 and 8.928 in (0, 0.5); 0.5, 0 and 1.4275 in (0.5, 1). The computed density pro-

files by various numerical schemes are shown at T = 0.16 in Fig. 10 with Dx = 1/100 by default. For the
central schemes on overlapping cells, Dsn is chosen with CFL factor 0.4, D tn = 0.5Dsn. For the NT scheme

and FD2, Dtn is chosen with CFL factor 0.4 and 0.9 respectively. Fig. 10(h) is computed by COC-ENO-2

with Dx �
ffiffiffi
2

p
=100 which has half of the complexity as in Fig. 10(g). For this mesh size the complexity

(when Dtn = Dsn) is about the same as the NT scheme (see Fig. 10(e)), but the upper bound Dsn of the time

step size is larger and the computational results remain almost the same for any Dtn2(0,Dsn] (because there
is no O(1/Dt) dependent dissipation).

Example 6. Shu–Osher problem [40]. It is the Euler equation with initial data
ðq; v; pÞ ¼ ð3.857143; 2.629369; 10.333333Þ for x < �4;

ðq; v; pÞ ¼ ð1þ 0.2 sinð5xÞ; 0; 1Þ for x P �4.



Fig. 8. Hyperbolic-parabolic problem. ‘‘�’’: Dx = 1/15; ‘‘–’’: Dx = 1/125.

Fig. 9. Buckley–Leverett Problem computed with COC-ENO-3. Dx = 1/40, T = 0.4, Dsn = 0.1Dx. Left: Dtn = 0.5Dsn. Right:

Dtn = 0.01Dsn.
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The density profiles are plotted at T = 1.8, with Dx = 1/40 by default, see Fig. 11. For the central schemes
on overlapping cells, Dsn is chosen with CFL factor 0.45, Dtn = 0.5Dsn. For the NT scheme and FD2, Dtn is
chosen with CFL factor 0.45 and 0.9 respectively. Note that the results in Fig. 11(a) and (e) are at the same

complexity level. Roughly speaking, for the same mesh size, CO-ENO-r has about the same resolution as

previous staggered central schemes of similar order, while COC-ENO-r seems to provide better resolution

in avoiding oscillation when using reconstructions based only on conservative variables. We have also

tested COC-ENO-3 with Dx �
ffiffiffi
2

p
=40 (so that its complexity is reduced by 1

2
) and found the result (not

shown) very similar to the one in Fig. 11(g). The non-staggered FD2 can have twice as large time step size

as the staggered schemes. When its mesh size is reduced to such that its complexity matches that of the NT
scheme or COC-ENO-2, its resolution (not shown here) is slightly higher for the Lax problem but is slightly



Fig. 10. Comparative results of density for Lax�s Problem, Dx = 1/100 by default. (a) COC-ENO-3; (b) COC-ENO-3 (Dx = 1/200);

(c) COC-WENO-2-5; (d) COC-WENO-2-5 (Dx = 1/200); (e) NT scheme; (f) FD2; (g) COC-ENO-2; (h) COC-ENO-2 ðDx �
ffiffiffi
2

p
=100Þ.
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lower for the Shu-Osher problem than both schemes. Although the resolution of COC-WENO-2-5 is not as

high as COC-ENO-3, it is much better than the other second order schemes. In 2D its cost could be much

smaller than COC-ENO-3. This will be further studied in the future.



Fig. 11. Shu–Osher Problem, Dx = 1/40 by default. (a) NT scheme; (b) FD2; (c) CO-ENO-2; (d) COC-ENO-2; (e) COC-ENO-2

(Dx �
ffiffiffi
2

p
=40Þ; (f) COC-WENO-2-5; (g) CO-ENO-3; (h) COC-ENO-3.
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Example 7. Woodward and Colella problem [43] for the Euler equation computed by COC-ENO-3. Ini-

tially, the density, momentum, total energy are 1, 0, 2500 in (0, 0.1); 1, 0, 0.025 in (0.1, 0.9); 1, 0, 250 in

(0.9, 1). The density, velocity and pressure profiles are plotted in Fig. 12 (T = 0.01) and Fig. 13 (T = 0.03
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and 0.038). The density peak in Fig. 12(a) seems to be quite close to the fine solution (computed with

Dx = 1/2000).

Example 8. Double Mach reflection [43] computed by COC-ENO-3. A planar Mach 10 shock is incident

on an oblique wedge at a p/3 angle. The air in front of the shock has density 1.4, pressure 1 and velocity 0.
The boundary condition is described in [43]. The 2D Euler equation can written as
Fig. 1

Dtn ¼
ut þ fðuÞx þ gðuÞy ¼ 0; u ¼ ðq; qu; qv;EÞT ; p ¼ ðc� 1Þ E � 1

2
qðu2 þ v2Þ

� �
;

fðuÞ ¼ ðqu; qu2 þ p; quv; uðE þ pÞÞT ; gðuÞ ¼ ðqv; quv; qv2 þ p; vðE þ pÞÞT ;
where c = 1.4. The boundary passes through the cell edges of one class of the overlapping cells, e.g. the cells

of {Ui,j} in Fig. 5. The ghost cell averages (completely outside the domain) of both classes of the cells can be
set according to the boundary condition. The cell averages fV n

i;jg of the cells being cut through by the
2. Woodward and Colella Problem computed by COC-ENO-3. Dx = 1/400, T = 0.01, Dsn chosen with CFL factor 0.45,
1
2
Dsn by default. (a) density; (b) velocity; (c) pressure; (d) density, Dtn = 0.01Dsn.



Fig. 13. Woodward and Colella Problem computed by COC-ENO-3. Dx = 1/400, Dsn chosen with CFL factor 0.45 , Dtn ¼ 1
2
Dsn. On

the left, T = 0.03, (a) density; (b) velocity; (c) pressure. On the right, T = 0.038, (a1) density; (b1) velocity; (c1) pressure.
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boundary are computed by the second equation of (10) from the cell averages at the previous time level,

thus avoiding the problem of setting boundary values for them. The density and pressure profiles are plot-

ted at T = 0.2 in Fig. 14, with 30 equally spaced contours.



Fig. 15. 2D Riemann problem computed by COC-ENO-3. Dx = Dy = 1/400, Dsn chosen with CFL factor 0.4, Dtn = 0.9Dsn. Left:
density. Right: pressure.

Fig. 14. Double Mach reflection computed by COC-ENO-3. Dx = Dy = 1/120, Dsn chosen with CFL factor 0.4, Dtn = 0.9Dsn. Upper:

density. Lower: pressure.
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Example 9. 2D Riemann problem [22] for the Euler equation computed by COC-ENO-3. The computa-

tional domain is [0,1] · [0,1]. The initial states are constants within each of the 4 quadrants. Counter-

clock-wisely from the upper right quadrant, they are labeled as (qi, ui, vi, pi), i = 1, 2, 3, 4. Initially,

q1 = 1.1, u1 = 0, v1 = 0, p1 = 1.1; q2 = 0.5065, u2 = 0.8939, v2 = 0, p2 = 0.35; q3 = 1.1, u3 = 0.8939,
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v3 = 0.8939, p3 = 1.1; q4 = 0.5065, u4 = 0, v4 = 0.8939, p4 = 0.35. The density and pressure profiles are plot-

ted at T = 0.25 in Fig. 15, with 30 equally spaced contours.
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