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Abstract

This work tries to increase our understanding of why moving mesh
methods often work very well. It combines techniques from the sym-
metric error estimates (SEEs) of Dupont [4] and Bank and Santos [1]
with ideas that motivated the analysis of a modified method of char-
acteristics by Douglas and Russell [2]. By changing the usual time
derivative to a time derivative along approximate characteristics in the
SEE norm, the symmetric error estimate in [1] can be improved. In
addition, by introducing yet another SEE norm which is more strongly
mesh-dependent we provide another SEE which provides different in-
sights into the convergence of these methods; one symmetric error
estimate that is presented can be used to derive optimal order L2
convergence in certain settings.
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1 Introduction

Moving mesh finite element methods have been known for quite a while [5, 6]
and they are increasingly used in practice, but the analytical understanding
of these methods is far from complete.

A symmetric error estimate is, roughly speaking, a statement of the form,
if the error can be small in a certain norm then it s small in that same norm.
Somewhat more precisely there is a norm, || - ||, and a constant, C, such that

llerror| < C|best approximation error|,

where the left-hand side measures the error in the method at hand and the
right-hand side reflects the distance between the true solution and the func-
tion spaces used in the method. Of course, we need control on C' if such an
estimate is to be informative.

The results in section 2 of [4], section 3 of [1], and section 3 of this work
give bounds of this type. There are two things that distinguish the bounds
given here from the earlier work. The first is that here the constant, C, does
not increase as the advective term increases in size, provided the mesh move-
ment approximates the advective term well in a sense that is made precise.
Hence these results make it more clear that the mesh movement is actually
modeling the advection. The second is that the norm in section 3 involves
the convective derivative instead of the partial with respect to time, and as
Douglas and Russell pointed out in [2] for advection dominated problems the
convective derivative will be much smoother, and therefore easier to approx-
imate well. To give credit where it is due, Bank and Santos noted in [1] that
in part of their analysis the constants could be made independent of the size
of the advective term, and they also noted the similarity of the difference
equations to the modified method of characteristics [2].

While symmetric error estimates for parabolic equations have a certain
attractiveness in the simplicity of the statement that they make, it is some-
times hard to see the precise meaning of the result. In the case of Galerkin
methods for elliptic equations one has a symmetric error estimate in the
H'-norm, a statement that is relatively easy to understand. In the case of
parabolic equations, symmetric error estimates [3, 4, 1] involve combining
several norms and semi-norms, in the case of [4] for example the |- || is made
up from two norms and a semi-norm: the maximum in time of the L?-norm in
space, the L? in time norm of the H'-norm in space, and the L? in time norm



of the discrete H~! semi-norm in space of the time derivative. In one of the
analogous results here, the H'-norm is replaced by the “discrete H'”-norm,
i.e., the H'-norm of the H' projection into the space. It might appear at
first that weakening the norms is not an advantage, but it actually highlights
the importance of the only remaining norm to such a degree that one can
get optimal order L? convergence in some contexts. In a sense the SEE that
comes from this norm is a way to combine the techniques of [4] with those of
Wheeler [7]. We view this as one of the most interesting results of this work.

In section 2 we give the advection-diffusion problem whose approximate
solution we are studying here, and we define a continuous-time moving mesh
method in terms of a “convected time derivative”. In section 3 we give three
symmetric error bounds for the continuous-time case. Then we present a
symmetric error estimate for a discrete time case. In sections 4 and 5 we give
two optimal order L? error bounds that follow from the results of section 3.

2 Model Problem and a Moving Mesh Galerkin
Method

Consider the following advection-diffusion model problems on @ = 2x(0,7),

Ou—v/-(ayu)+v-yyu+cu=f, onQ@,

% =g, on Ty x (0,7), (1)
u=0, onl'p x (0,7),
U = Ug, for t =0,

where a(z,t),v(z,1),c(z,t), f(z,t), and g(x,t) are smooth and bounded and
0 < ap < a < a; for some constants ag,a; > 0. 2 is a bounded domain in
R4, For simplicity, we assume that € is a fixed polyhedron. I'p, 'y are parts
of the boundary 99 such that TpNT'y =0, Tp Uy = 0Q and ' is closed.
Suppose that D = UD; is a fixed polyhedron where the D;’s are closed sets
with nonvoid interior such that the interiors of the D;’s are disjoint. We
need few restrictions on the D;’s for much of the argument, but to keep the
discussion simple we suppose that each D; is a simplex and that they form
a tessellation of D. We suppose that there is a continuous mapping G from
D x [0,T] onto €2 such that: (1) for each ¢, G(-,t) is a 1 — 1 piecewise linear
mapping (with respect to {D;}) of D onto Q; and (2) G is continuously



b G(1) .
Figure 1: Moving mesh as a time dependent mapping G.

differentiable on each D; x [0,T]. We also suppose that 0D = vp U vy and
that I'p = G(vyp,t) and I'y = G(yn,t). We denote by Q; = Q;(t) the image of
D; under G(-,t). Let Mp be a finite dimensional subspace of H'(D) so that
each function in M p vanishes on yp; then the finite element space on 2 is
defined by M(t) = {d(z,t) : ¢(G(-,1),t) € Mp}. It is sometimes convenient
to think of this moving mesh as being generated by a mapping of {2 onto
itself. (See Fig. 1.)

Let G' = G7!(-,t) denote the inverse of G as a map of D onto {2 with ¢
fixed; so this function can be thought of as being defined on Q. Let G, be the
partial derivative of G with respect to t. The finite element mesh is advected
with a flow that is given by

i(t) = GG (x, 1), ).
Denote a particular directional derivative as follows,

D ptet) = %F(x, Dt w-vaF (o t).



where w(z, t) is a differentiable vector function such that w-v = 0 on I'y for
t > 0, v is the unit outer normal of 0f2.
We will use || - || as the norm on the Sobolev space H*(2); for domains
R other than Q we will use the more explicit notation || - || z«(g). The norm
and inner product on L?(Q2) will be denoted as || - || and (-, ), respectively.
The exact solution of (1) will satisfy

(%‘,w) +(avu, VY) + ((v—w)-vu, ) + (cu, ) = (f, ¢)+/FN gids, (2)

for any ¢ € H*(Q). We are looking for U € M(t) such that

DU

(pr @)+ @V U V) + (0= )- VU, 0)+ (U,0) = (£.)+ [ _gods, (3)

for any ¢ € M(t). The inclusion of the convective derivative here is not
really a change from the method discussed in [4], we have just added and
subtracted a term. However, it reflects a change in the way that we think
about and analyze the method. We will take the initial value for U to be the
L2-projection of ug into M (0).

3 Symmetric Error Bounds

First we get a basic relation that will be used in bounding the error. Taking
¥ € M(t) and setting ® = U — V¥ € M(t) and n = u—, gives for ¢ € M(t)

(22.0)+ (a7 2,96) + (v - w) - 72, 6) + (e, 9 "
= (2.6)+ (01, v9) + (v —w) - 71, 6) + (en, ).

From the definition of directional derivative we have the following equality
which we use in the energy-type arguments used later.

Lemma 1 Suppose that ¢(t) € M(t), and that ¢ is differentiable with respect
tot as a map into L2(Q). Then

Dé 1. d

(B ®) = 5 (1017 = [ 8" Vo wda).



Proof:

Lloll> = 2 [, drodr
2 Ja %(fﬁbdf + Jo ¢*(V - w)dz — Jry ¢’w - vds
= 2y %?gbdx + Jo ¢*(V - w)dz.

O
Define the mesh-dependent semi-norm || - ||(=1,m(1)) by

||U'||(*1,M(t)) = sup |(’U,, ¢)| .
pem(typzo |9l

For X a normed space and v a function that maps (0,7") into X, let

vl zo(o,7;x)

denote the LP-norm on the interval (0,7") of the X-norm of v. The first
symmetric error estimate will be given norm || - | defined by

T Duv
|HUH|2 = ”U”%(’O(O,T;L?(Q)) + ”UH%Q(O,T;Hl(Q)) +/0 ||E”?—1,M(t))dt'
Theorem 1 Suppose that there eixist constant ¢ and cy such that for all

(z,1) € Q
Vmw(xvt) < ¢, |’(U—’U‘($,t) < cs. (6)

Then there is a constant C depending only on cq,co, T and bounds on the
coefficients a and ¢ such that, for any smooth function ¥ from [0,T] into
L2(Q) with U(t) € M(t),
lu—=Ul < Cllu— .

Proof: By using ¢ = ® in equation (4) we see then that

d Dn

Z2IP +aoll It < CLIRIF + 15 1oy + [ImllT- (7)
This estimate and Gronwall’s inequality give that

19117 s 0722y + Wl @l 2071110y < C (1RO 720y + [I0l7) - (8)
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Also, for any ¢ € M(t), (4) gives that

Do
(558) < CUIBI + 1 D s + il Hlgl ©)
Therefore D
< 2,
R e (10)

Since U(0) is the L? projection into M (0) of ug we see that [|®(0)|| < [|n(0)]|.
Hence ||®] < C||n||. The triangle inequality then gives that |u — Ul <
Cllu —¥|. O

In the application of Gronwall’s inequality one gets exponential growth
in time of the estimate of the error, unless there is sufficient dissipation in
the equation to counter it. If we let ¢y be a bound for the absolute value of
c(x,t) on @, then the arithmetic of the proof gives that the constant C' of
(8) contains a factor exp(KT), where K can be of the form

K =3¢y +¢1+ ¢o + ag/3 + 3¢5/ ag.

Hence, if ¢, is large and ag is small, this constant is very big. An interesting
side light of the above calculation is that most of it is local, so that the
important quantity for most parts of the estimate is the maximum of |v —
w|?/a. This would lead one to conjecture that in parts of the problem where
diffusion is small the directional derivatives that we bring into the estimation
should be very close to the ones that point in characteristic directions.

The function w in the definition of the directional derivative should be
chosen so that ||u — || in the above theorem is small. To illustrate how this
might be done we consider the case in which M(t) is the space of continuous
piecewise linear functions over a triangular mesh given by the €2;’s. If we
take w = z, then nodal interpolation commutes with the convective differen-

tiation; i.e., % IDt, where Iu is the nodal interpolant of u. Therefore
D(u — Iu) D( 2

P < 0 (T )

where h; is the diameter of €2;. Here we emphasize that the norm involved is
applied to the convective derivative, which can be a much smoother function
than the usual partial time derivative.

— 2 |_ <
I o l—1.m@y <
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Next we weaken the norm used in the previous theorem in two different
ways to get somewhat different results.
Let ¢3 = (ag + ca/ap)/2. Set

B(p,v) = (@ v (¢), V¥) + (v = w) - V9, ) + (¢, ).
It is easy to check that for any ¢ € H'(Q)

a
B(e,9) > 5 lIelt. (11)
We define a linear projection P, : H'(Q2) — M(t) by
B(v — Pyv, ¢) =0, (12)

for all ¢ € M(t) Now we can define a new norm || - |o in which the H' part
of the previous norm has been weakened to be a semi-norm:

1ol = o3 oz + 1Pl oy + [ 15 st (13)
Dt

The mnemonic for the use of the subscript 0 is that his norm emphasizes the
H° or L? part of the norm.

Another norm can also be defined to put more weight on the L?(H') part
of || || by weakening the L>(L?) part. Let Py be the L? projection onto
M(t). Set

IwlT = I1Pov Iz 012201 + 10112002001 +/ Dtll “umepdt (14)

Theorem 2 If the conditions of Theorem 1 hold, then there is a constant
C > 0 depending only on ci,ce,T and bounds on the coefficients a,c such

that for any smooth function ¥ from [0, T] into L*(Q) with ¥(t) € M(t),
lu=Ullo < Cllu— o,
lu Ul < Cllu— ¥l

Proof: Because the test function ¢ in (4) is in the space M(t) we can rewrite
that relation as

(%‘f,) (av ®,ve)+ ((v—-w) v®,¢)+ (c,¢) (15)
(Dt=¢)+B(P177 ¢) ((0_03)77’¢)'

8



This gives the following analog of (7):
d 2 2 2 Dn, ., 2 2
11217+ aoll @Iy < CLIRI + |5 [ Ly + 1Pl + (a7} (16)
Since P;® = ®, this becomes
d 2 2 2 Dn, ., 2 2
I+ aol| 2@l < CUIRI + 15 Iy + [Pl + [lnll"3. - (17)

The estimate (9) becomes

(D(I)

Dt’

The relations (17) and (18) give the bound for the || - [|o norm, just as in the
proof of Theorem 1.

Examination of (7) shows that the 7 term in (8) can be replaced by |7]|;-
The fact that Py® = ® gives

1 Po® 300 0,120y + G0 ll® 1132 0,101 ) < C (IIP6®(0) 32y + Imll3) -

Next from (9) and the above relation we see that the analog of (10) holds with
[n]| replaced by ||n|li- Also, the use of U(0) = Pyu(0) gives that ||[¥(0)|| =
In(0)|]. Combining these observations completes the proof of the second
inequality in the theorem. O

Next we examine a fully discrete scheme. In this case we restrict ourselves
to the case w(x,t) = &. Following [1], for a given partition P = {t, =
0,t1,-++,tp_1,tn, = T} of [0,T], consider G(s,t) to be linear in ¢ for ¢ €
[ti—1,1;), for any 7, and continuous in ¢ on the whole of [0, 7]. Let M be the
collection of functions ¢(x,t) on @ such that ¢(-,t) € M(t) for any ¢t € [0,T],
piecewise continuous in ¢ and linear along the trajectory of mesh movement,
ie.

P(G(s,1),1) = d(G(s,t5-1),t5-1) +0[0(G(s,15),t5) — d(G(s,t5-1),tj-1)],

where t =1t;_1 4+ 0(t; — t;_1), for any 6 € [0, 1]. The following relation holds
for any t € (t;_1,t;), s € Dj, for all 4, j:
d(G(s,t:),t:) — ¢(G(s,tic1),tic1) Do

t—ti = Ft(g(sat)at)

Dn
¢) < C{||P®]|, + IIEII(—LM(@) + [Pl + [l o] (18)




Note that D¢ is just the same as in the continuous time case on each (¢; 1, ;)
with the restrlctlon that w = &, but it also has a discrete form in this special
case. It is clear that functions in M are defined by their values at the ;’s,
so to define the approximate solution we need only say how it is computed
at the times ;.

The time discrete approximate solution U € M is such that U(0) is the
L? projection of u(0) onto M(0) and, for t = ¢;—,

(s 8+ @VU,90)+(0-0)-TU,6) + (V) = (£.0)+ [ _gds, (19)

for any ¢ € M(t;), 7 =1,2,---,n. Let

" D
00 = max [[o(e)|* + 22 (4 = ti-){IP )T + 11550 Gt

0<5<n =

vl

we have the following theorem parallel to Theorem 3.1 in [1].

Theorem 3 Let D(t;) denote the piecewise constant function |det(575G)| on
D. If there are constants c1,cy > 0 independent of the mesh so that
D(t;) — D(tj-1)
tj - tj—l

< CID(tj—l):

for1 < j < mn, and |lw — v|(z,t) < ¢co for all (z,t) € Q, then there is a
constant C' > 0 depending only on cy1,co,T and bounds of coefficients a,c
such that |[u — Ulo,g < Cllu — ¥|o,qa for any ¥ € M.

Proof: The fully discretized scheme yields an error similar to (15), with
t =t;—. Let ¢ = ®(t;) in the analog of (15), and use an argument like that
in [1] to get

(52 0(1) > A (19() 1 = [19(-0)]1%)

Dt (20)
—Sle-)l?
where At; =t; —t;_1. We then have
1 2 2 1 2
—(Ilcb(t')ll = 12{t-)I%) + gaoll 7 ()] (@1)

<C{IID" S22 iy + 1PN + (@)1 + lnE) |12

10



From the discrete Gronwall’s inequality one obtains the following:

12 () +

[ J
500> ALl 7 ()| < Clinllga- (22)
=1

Also from the analog to (15) at ¢t = ¢;—, for any ¢ € M(t;),

(P52, 0(1)) < CLIw SN+ 1R + 12252 1y + (23)
[1Pn(t;)] + ||77(tj)||}||¢( oI
With the help of (22), (23) becomes
ZN | ( )||( LM(t; (24)

Finally combine (22), (24), and a triangle inequality to complete the proof.
O

4 An Optimal Order L? Error Estimate

In this section, we prove the following optimal order error estimate for the
one-space dimensional, continuous time case. We will take Mp to be the
space of continuous piecewise linear functions over a mesh 0 = sy < s1 <

. < 8, = 1 on the reference domain D = [0, 1], so M(t) is just the space
of continuous functions which are polynomials of degree at most one on each
interval Q; = [z; 1, x;], with z;(t) = G(s;,t). Take w = &. Let h; denote the
length of €2;, and note that x is a continuous piecewise linear function over
the mesh. The following theorem gives an optimal order error estimate in
which the error bound depends on the bounds of the difference between the
growth rate of the length of each element with respect to time and the rate
of “compression” of the exact solution, i.e. c¢;; the difference between the
convection velocity and the velocity of mesh movement, i.e. cy; and other
bounds of the coefficients of (1). Most importantly, the error bound does
not depend on the convection velocity v, which shows an advantage of mesh
movement.

11



Theorem 4 If there are constants ci, cz,c3 > 0 so that ||0,(v — £)||e < €1,
|v — &||e < c2 and max; ||0za|Leo(;) < c3 for all t € [0,T], then there is a
constant C(cy, ¢o, 3, g, a1, ¢, T;Y) such that

lu—Ull#) < CLIE: Billullf o) oo

! 25
(S P22 ) 2 0 (25)

forany 0 <t <T.

Proof: The proof is an application of Theorem 2 using |- [|o- Since |Ju—U||o
dominates the term we want to bound, it suffices to show that ||u — ¥||o
can be bounded by terms on the right-hand side of (25). We choose ¥
to be the nodal interpolant Ju of u. The estimate of ||u — W||Le(0,;02(0))
is straightforward. The observation that D% commutes with interpolation
means that ||2-(u — ¥)||z20,r;22(n)) can be bounded by the terms on the
right-hand side of (25); hence the weaker semi-norm on 2 (u — ¥) is also
bounded.

The H'(Q)-norm of P;(u—¥) can be bounded as follows. For any ¢ € M(t),

B(Pl(u - \Ij)’d)) = B(u - \II,d))
= Ez le aaac(u - \II) aac¢dl‘ + Ez le(U - x)am(u - \II) d)daj
+03(’LL— \I;’ ¢)
= —YiJo,(u—¥)0sa Opppdr — 3; [o,(u — V){p0:(v — &) (26)
+(v — )00 }dr + c3(u — V¥, @)
|0zallzeo @y llu — |[[|B]l1 + [|0:(v — ) || oo (e lw — P[[| ]|
v = @[l Lo lu — T[]}

IN

Using the coercivity of B(-,-) (see (11)) and taking ¢ = P;(u — ¥) we get
that
[1P1(u =)l < Cllu—¥[. O

Note that the integration by parts was done subinterval by subinterval so a
needs only to be locally smooth. The approximation results in this section
are more local than we can prove in the general case studied in the next
section.

12



5 Optimal Order L?(Q2) Error Estimate for Gen-
eral Space Dimension

In this section we return to the d-dimensional case. There will be several
situations in which we need to use surface integrals on the elements (2;;
we will use 2-dimensional terminology and refer to these as integrals over
the edges. Thus an edge is the intersection of Q;’s with positive (d — 1)-
dimensional measure. Consider the Dirichlet problem, I'y = (), and take
w = . Denote by e; the edge between two adjacent elements and by n.; a
normal to e;, and define the jump operator [-] across the edge e; by

[Fl(z) = el_i)%#{f(x +ene;) — F(x —ene;)}, Vo € ;.
Assume that Q and @ are such that the Diriclet problem has uniform H?
regularity; i.e., there is a constant C such that for any ¢ € [0,T], ¢ € L?(),
there exists a £ € Hi(Q) N H2(Q) satisfying

/ a7 €-nde = / gndz, ¥n € Hy(9Q), (27)
Q Q

and [|€]|2 < Cllqll-

Suppose that M p consists of a space of continuous piecewise polynomials
of degree at most 7. We assume that there is a constant C such that for any
t € [0, 7] and for any £ € H}(Q) N {ILH*(%)}, s > 2,

inf — o< C hz(min{r+1,s}—z) 2 =01
o 1€l < C 2k €l s 1= 0,1,

where h; is the diameter of the element €2;. Let h denote max; h;.

In this section we need bounds on \/z, the Jacobian of the function z
with respect to x. We will use the norm on matrices that is induced by the
Euclidean norm on vectors. In particular || 3/ Z||oo is the L>(£2) norm of the
norm of the matrix /.

We have the following optimal order estimate for the L?(Q2)-norm of the
error. While it looks like a generalization of Theorem 4 to higher dimensional
spaces, there are differences. The hypotheses are stronger here, and the result
is not quite so local.

13



Theorem 5 Suppose that there are constants cy, co, 3, Cq4,c5 > 0 so that, for

all t € [0.T], || Vil < c1; | 7 0lloo < 25 [0 = dloo < €35 1B lloos | 7 @llcos

|V 3¢ Bt lloo < ca; and the norm of the jump in 74 across an edge e = N, is
bounded by cs min{ hy, hy, }. Then there is a constant C(cy, ¢z, ¢3, ¢4, C5, Qg, a1, ¢, T, €2)
such that

lu—Ullt) < C{I ™D w2, o) Y2 | oo,y

2m1nr 1,s}—1 (28)
+|h (2 b (intr+1- 2803 ) 2 220,11}

for any t € [0,T].

Proof: Again we will use Theorem 2 to establish this L*({)) estimate. We
will use an elliptic projection to give the ¥ that is in Theorem 2. The most
tedious part of the proof is bounding the time derivative part of | ||o; we do
that here by estimating the L?(Q)-norm of that term.

Set B1(&,1) = (a7 &,/n), and define a linear projection
P: H}(Q) — M(t) by

Bi(§ — P&, ¢) =0, Vo € M(t).

Denote n = u — Pu. For any given t € [0,T], let ¢(z) be any function in
M(t). Let ¥(x,t) = ¢(G(G™'(x,1),t)) for any ¢ € [0,T]. It is easy to see
that 1(z,t) = ¢(z) and 22 =0 for any t € [0, 7).

We have, at time ¢,

Silfo, e v n-védr + [, a7 1 - Vdd (29)
+ Jo, a7 VT + [0, 07 1 V(T - n)ds},

where n is the outer norm of 0€);. Note that

Dn .
/Qiavw-wdx—/mavﬁ-vqﬁdm—/mav(a:-vn)-wdx,

and

i-v(vn-ve) = Zwk% Z O;100; )

= v(m vn) w ( n)" (vx)(w)
+v(E-ve) - vn—ve)(vi)(vn).

14



Using the fact that 0 = D(f ) — () + i - Vp(x) we have

| avn-vds

—fg ey n-vode + fo, a7 (B) - Véde + [o,a v n- V(v - &)dx
— Jo, (v )(w)(vé)drc—fn a(ve)" (vi)(vn)da.

(31)
Therefore we can write
d Dn
810, 9) = Bi(57 ¢) + E(n,6) =0,
where
E(m¢) = Jopi V1 Vit foayn vo(v-d)dr g
= na(yn){vi + (v&)T}(vé)da.
It is easy to see that E(u,v) < C||ul|1||v]1, so
1B < OB (5.5 )
< C{lIBHINBE = ol + lnllill 5F - ¢||1 + ||77|| 15811}
It follows that
Du
|| ||1 < Cllinll + inf 5, — @lli}- (34)
Next we use a duality argument to get an estimate of || 22||. Let £ € Hj(Q)N
H?(Q) satisfy
_ [ Dn 1
[ave vedn= [ Fleds, ¢ e Hy).
For any ¢ € M(t),
(%ga %2) = Bl(%?ag)
B (35)
= Bl(Dtaf_ ¢) +E(na€_ ¢) o E(’I’],f),
and by integration by parts,
En,§) = _fsﬂ?(v V£+ g A&)dr — 3 Jo,n ANE(V - 2)d

- Ej fej %nej [V x]ds
+ Zi Jo, 1{(va)" (V) (V€) +a v (V) (VE)Iz g4
+ 35 Je; a n([VE](VE)) - ne,ds

+ 51 Jo, 11 (V) (V)T (7€) + a7 (V)T (v€)) }da

+3; L, an([vi]" (VE)) - ne,ds.

15



We need to take a close look at the integrals over the edges. Suppose that
an edge e = Qx N Q. Let h(e) = min{hg, by, }. The first boundary integral
n (36) can be bounded as follows:

s
2 / el #lds < O3 es s 107 (e5) s

Cle )Zg ||h1/2(€g)77||L2<e ytex; ||h1/2(€])ane I22e,) (37)
S C( ) ZilllnllZa @, + Bi nlin,) + Ce X (\§|H1 o T 1 1€ (0,)
Cleflinll* + ZZ Il @) }+ Cel| BHIP, Ve > 0.

Similar results can be achieved for the other integrals over the edges e;, so
that by choosing € small enough, we can conclude that

(B, &) < Clnll* + 32 i nlin} + 5 || |

Also choose ¢ € M(t) so that

2

D
Bi(22€ ~ 6) < CI 2 le — ol < CHI DMWY,

and
E(n, & —¢) < Chlinlh || ||

Therefore we have from (35)

B2 < C{n?|| 3 ||2+h’2||77||2+||77||2+Zih12|77|%11(9i)}
(min 1 1)
< CR2y RSO DR o 3o )

The rest of the proof is an application of Theorem 2 using || - [lo- Since
lu — Ullo dominates the term we want to bound, it suffices to show that
e — ¥|lo can be bounded by terms on the right-hand side of (25).

We choose ¥ = Pu. The estimate of ||u — W[ e0(0,7;22(q)) i straightfor-
ward. The weaker semi-norm on £ (u — ¥) is also bounded from (38). The

Dt
H'(Q)-norm of P;(u — ¥) can be bounded as follows. For any ¢ € M(t),

B(Pl(u_‘ll)7¢) :B(u—\ll,¢)
Bl(u—\D,¢)+((v—jc)-v(u—\I’),¢)+c3(u—\If,¢)
—(u=¥),0v-(v—2)+ (v—10) Vo) +cs(u—V,¢) (39)
(I (v = &) ooy + c3)[Ju — F[[|¢]

Fllv = @l oo ||u — Yl[[¢]]x-

(38)

IA

16



Using the coercivity of B(-,-) (see (11)) and taking ¢ = P;(u — ¥) we get
that
1Pr(u—= W)y <Cllu—0[. O

The % term was estimated in L*(Q) instead of the discrete H~' semi-
norm, so one might think that if (27) satisfies an H3-regularity bound and
was smooth enough one might be able to weaken the norm on 22. We were

Dt
not able to do this, except in trivial special cases.

6 Remarks

If we replace the boundary condition w-v =0 on I'y by (w —2)-v =0
on I'y, Lemma 1 holds even if the domain €2 is time dependent. Therefore
it seems possible to get analogous results in this situation. However, a more
interesting situation is one in which mesh elements flow into and out of the
domain, instead of just moving around in the domain; this will be the topic
of future work.
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